仑匀堂具体是做什么的?可以加盟吗?

时间: 18:08:12 来源: 本文已影响人

电子束聚焦与电子荷质比的测量实验报告 本文关键词:电子束,测量,聚焦,实验,报告

电子束聚焦与电子荷质比的测量实验报告 本文简介:选做实验2电子束聚焦与电子荷质比的测量电子电量e和电子静质量m的比值e/m称为电子的荷质比,又称电子比荷。1897年J.J.汤姆孙利用电磁偏转的方法测量了阴极射线粒子的荷质比,它比电解中的单价氢离子的荷质比约大2000倍,从而发现了比氢原子更小的组成原子的物质单元,定名为电子。精确测量电子荷质比的值

电子束聚焦与电子荷质比的测量实验报告 本文内容:

电子束聚焦与电子荷质比的测量

电子电量e和电子静质量m的比值e/m称为电子的荷质比,又称电子比荷。1897年J.J.汤姆孙利用电磁偏转的方法测量了阴极射线粒子的荷质比,它比电解中的单价氢离子的荷质比约大2000倍,从而发现了比氢原子更小的组成原子的物质单元,定名为电子。

精确测量电子荷质比的值为1.11库仑/千克,根据测定电子的电荷,可确定电子的质量。

20世纪初W.考夫曼用电磁偏转法测量β射线(快速运动的电子束)的荷质比,发现e/m随速度增大而减小。这是电荷不变质量随速度增加而增大的表现,与狭义相对论质速关系一致,是狭义相对论实验基础之一。

一、加深电子在电场和磁场中运动规律的理解;

二、了解电子束磁聚焦的基本原理;

三、学习用磁聚焦法测定电子荷质比e/m的值。

示波管是电子束试验仪和示波器的主要部分,其结构图1

见图1,它由三部分组成:

(1)电子枪:它发射电子,把电子加速到一定速度,并聚焦成电子束。

(2)由两对金属板组成的电子束偏转系统。

(3)在电子管末端的荧光屏,用来显示电子的轰击点。所有这些部件都封在一个抽成真空的玻璃圆管内。一般管内的真空度为10-4Pa,这样可以使电子通过管子的过程中几乎不与气体分子碰撞。

阴极K是一个表面涂有氧化物的金属圆筒,是电子源,经灯丝加热后温度上升,一部分电子作逸出功后脱离金属表面成为自由电子。自由电子在外电场作用下形成电子流。栅极G为顶端开有小孔的圆筒,套在阴极之外,其电位比阴极低(-5V至-20V),使阴极发射出来具有一定初速的电子,通过栅极和阴极间的电场时减速。初速大的电子可以穿过栅极顶端小孔射向荧光屏,初速小的电子则被电场排斥返回阴极。如果栅极所加电位足够低,可使全部电子返回阴极。这样,调节栅极电位就能控制射向荧光屏的电子射线密度,即控制荧光屏上光点的亮度,这就是亮度调节,记符号为“¤”。

为了使电子以较大的速度打在荧光屏上,使荧光物质发光亮些,在栅极之后装有加速电极。加速电极是一个长形金属圆筒,筒内装有具有同轴中心孔的金属膜片,用于阻挡离开轴线的电子,使电子射线具有较细的截面。加速电极之后是第一阳极A1和第二阳极A2。第二阳极通常和加速电极相连,而第一阳极相对阴极的电压一般为几百伏特。这三个电极所形成的电场,除对阴极发射的电子进行加速外,并使之会聚成很细的电子射线,这种作用称为聚焦作用。改变第一阳极的电压,可以改变电场分布,使电子射线在荧光屏上聚焦成细小的光点,这就是聚焦调节,记符号为“⊙”。当然,改变第二阳极的电压,也会改变电场分布,从而进一步改变电子射线在荧光屏上聚焦的好坏,这是辅助聚焦调节,记符号为“○”。

为了使电子射线能够达到荧光屏上的任何一点,必须使电子射线在两个互相垂直的方向上都能偏转,这种偏转可以用静电场或者磁场来实现。一般示波管采用静电场使电子射线偏转,称静电偏转。静电偏转所需要的电场,由两对互相垂直的偏转板提供。其中一对能使电子射线在X方向偏转,称X向偏转板Dx。另一对能使电子射线在Y方向偏转,称Y向偏转板Dy。

从示波管阴极发射的电子在第一阳极A1的加速电场作用下,先会聚于控制栅孔附近一点,然后又散射开来,如图2所示。

为了在示波管荧光屏上得到一个又亮又小的光点,必须把散射开来的电子束会聚起来。与光学透镜对光束的聚焦作用相似,由第一阳极A1和第二阳极A2组成电聚焦系统,A1、A2是两个相邻的同轴圆筒,在A1、A2上分别加上不同的电压V1、V2,在其间形成一非均匀电场,电场分布情况如图3所

示,电场对Z轴是对称分布的。

电子束中某个散离轴线的电子沿轨迹S进入聚焦电场,图4画出了这个电子的运动轨迹。

在电场的前半区,这个电子受到与电力线相切方向的作用力F。F可分解为垂直指向轴线的分力Fr与平行于轴线的分力FZ。Fr的作用使电子向轴线靠拢,FZ的作用使电子沿Z轴得到加速度。电子到达电场后半区时,受到的作用力F’

可分解为相应的F’r和F’Z两个分量。F’z分力仍使电子沿Z轴方向加速,而F’r分力却使电子离开轴线。但因为在整个电场区域里电子都受到同方向的沿Z轴的作用力(FZ和F’Z),由于在后半区的轴向速度比在前半区的大得多。因此,在后半区电子受F’r的作用时间短得多。这样,电子在前半区受到的拉向轴线的作用大于在后半区受到离开轴线的作用,因此总效果是使电子向轴线靠拢,最后会聚到轴上某一点。调节阳极A1和A2的电压可以改变电极间的电场分布,使电子束的会聚点正好与荧光屏重合,这样就实现了电聚焦。

三、磁聚焦原理(偏转电场为零)

1、若将示波管的加速电极、第一阳极A1、第二阳极A2、偏转电极Dx和Dy全部连在一起,并相对于阴极K加同一加速电压Ua,这样电子一进入加速电极就在零电场中作匀速运动,如图5所示。这时来自电子射线第一聚焦

点F1(在栅极G的小圆孔前方)的发散电子射线将不再会聚,而在荧光屏上形成一个光斑。为了能使电子射线聚焦,可在示波管外套一个通用螺线管,使在电子射线前进的方向产生一个均匀磁场,磁感应强度为B。在示波管中,栅极和加速电极靠得很近。因此,可以认为电子离开第一聚焦点F1后立即进入电场为零的均匀磁场中运动。

2、在均匀磁场B中以速度v运动的电子,受到洛仑兹力F的作用

当v和B平行时,F等于零,电子的运动不受磁场的影响,仍以原来的速度v作匀速直线运动。当v和B垂直时,力F垂直于速度v和磁感应强度B,电子在垂直于B的平面内作匀速圆周运动,如图6所示(图中的F和v只表示作大圈运动电子的洛仑兹力和速度的方向)。维持电子作圆周运动的力就是洛仑兹力,即

电子运动轨道的半径为:

电子绕圆一周所需的时间(周期)T为

从(2)式可见,周期T和电子速度无关,即在均匀磁场中不同速度的电子绕圆一周所需的时间是相同的。但速度大的电子所绕圆周的半径也大。因此,已经聚焦的电子射线绕一周后又将会聚到一点。

3、在一般情况下,电子束呈圆锥形向荧光屏运动,如电子速度和磁感应强度B之间成一夹角q,此时可将分解为与B平行的轴向速度()和与B垂直的径向速度

使电子沿轴方向作匀速运动,而在洛仑兹力的作用下使电子绕轴作圆周运动,合成的电子轨迹为一螺旋线(图7)。

电子速度的大小由加速电压Ua决定

调节纵向磁场B,使电子束交叉点到荧光屏的距离恰好等于螺旋线的螺距h,即

将(3)式代入(1.4)式,得到电子的荷质比

对于从第一聚焦点F1出发的不同电子,虽然径向速度

不同,所走的圆半径R也不同,但只要轴向速度

相等,并选择合适的轴向速度

和磁感应强度B(改变v的大小,可通过调节加速电压Ua;改变B的大小可调节螺线管中的励磁电流I),使电子在经过的路程中恰好包含有整数个螺距h,这时电子射线又将会聚于一点,这就是电子射线的磁聚焦原理。

纵向螺线管中磁感应强度为

m0=4p′10-7H/m,L,D和N分别是螺线管的长,直径和线圈匝数,光斑第一次聚焦的励磁电流为I1,第二次聚焦的电流为I2=2I1,第三次聚焦的电流为I3=3I1,加权平均值为

一、按图接好线路。A1—V1,A2—^。观察电聚焦、电偏转、磁偏转现象。

二、将聚焦电压旋钮逆时针旋到最小,把纵向线圈套在示波管上,线圈连接磁场电源。

三、先按照表1中的电压值调节加速电压,再调节励磁电流,使光点依次出现一、二、三次聚焦,分别读出励磁电流I1、I2和I3。

四、计算电子荷质比e/m。并与其公认值e/m

进行比较,计算相对误差。

一、实验线路中因有高压,操作时需倍加小心,以防电击。

二、聚焦光点应尽量细小,但不要太亮。

三、使用仪器时,周围应没有强磁场或铁磁体。螺线管应南北放置,尽量避免地磁场的影响。

四、在改变螺线管电流方向以前,应先调节励磁电源输出为“0”或关掉励磁电源,然后再使电流反向。

五、改变加速高压U后,光点亮度会改变,这时应重新调节亮度,若调节亮度后加速高压有变化,再调到规定的电压值。

一、调节螺线管中的电流强度I的目的是什么?

二、电子进行磁聚焦时,如何判断是一个螺距、两个螺距、三个螺距?

三、静电聚焦(B=0)后,加偏转电压时,荧光屏上呈现的是一条直线而不是一个亮点,为什么?

四、示波管的构造主要可分几部分?它们各自的作用是什么?

2022年高考物理知识点有哪些你知道吗?物理学是一门以实验为基础的学科。新课程标准中指出“观察和实验,对培养学生的观察能力和实验能力,实事求是的科学态度,一起来看看2022年高考物理知识点,欢迎查阅!

1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动。

2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量。

路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程。

(1)速度:描述物体运动快慢的物理量.是矢量。

①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述。

②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.

(2)速率:①速率只有大小,没有方向,是标量。

②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等。

(1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率。

(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示。

(3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致。

[注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大。

6.匀速直线运动 (1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动。

7.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动。

以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值。

(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+l –Sn=aT =恒量。

(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度。

②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动; ③图像与横轴交叉,表示物体从参考点的一边运动到另一边。

①在速度图像中,可以读出物体在任何时刻的速度。

②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值。

③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率。

④图线与横轴交叉,表示物体运动的速度反向。

⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。

一、质点的运动(1)------直线运动

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(4)相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)

1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2.互成角度力的合成:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

学好物理的因素首先是态度、信念、意志,其次才是方法、思维。谁不想做一个学习好的学生呢,但是要想成为一名真正学习好的学生,第一条就要好好学习,就是要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习,就是要树立信心,坚信自己能够学好任何课程,坚信“能量的转化和守恒定律”,坚信有几份付出,就应当有几份收获。道尔顿(英国化学家)就说:“有的人能够远远超过其他人,其主要原因与其说是天才,不如说他有专心致志坚持学习和不达目的决不罢休的顽强精神。”第二条就是要会学习,了解作为一名学生在学习上存在的如下几个环节:制定计划→→专心上课→及时复习→独立作业→解决疑难→系统总结→课外学习。这里每个环节中,存在着不同的学习方法,下面就针对物理的特点,针对就“如何学好初中物理”,这一问题提出几点具体的学习方法和技巧。

要得!基本概念要清楚,基本规律要熟悉,基本方法要熟练。课文必须熟悉,知识点必须记得清楚。至少达到课本中的插图在头脑中有清晰的印象,不必要记得在多少多少面,但至少知道在左页还是右页,它是讲关于什么知识点的,演示的是什么现象,得到的是什么结束,并能进行相关扩展领会。

二、独立完成一定量作业。

要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。把不会的题目搞会,并进行知识扩展识记,会收获颇丰。

三、重视物理过程,重视辅助作图。

要对物理过程一清二楚,不管是理论过程,还是实践过程,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。画图能够变为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。

四、全力上课,专心听讲。

上课要认真听讲,不走神。不要自以为是,要虚心向老师学习,向同学学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不同看法下课后再找老师讨论,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。

上课以听讲为主,还要有一个,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。

学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验等等。作记号是指,比方说对练习题吧,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,比如_、?、※、◎等等,以备今后阅读,作记号可以节省不少时间。

七、珍惜时间,提高学习效率。

时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,提高学习效率。而利用时间是一门非常高超的艺术。比方说,可以利用“回忆”的学习方法以节省时间,睡觉前、上学路上、等车时等这些时间,我们可以把当天讲的课一节一节地回忆,这样重复地再学一次,能达到强化的目的。物理题有的比较难,有的题可能是在散步时突然想到它的解法的。学习物理的人脑子里会经常有几道做不出来的题贮存着,念念不忘,不知何时会有所突破,找到问题的答案。

八、“端正态度,对外开放,取长补短”。

要虚心向别人学习,向同学们学习,向周围的人学习,看人家是怎样学习的,经常与他们进行“学术上”的交流,互教互学,共同提高,千万不能自以为是。也不能保守,有了好方法要告诉别人,这样别人有了好方法也会告诉你。在学习方面要有几个好朋友。最忌讳自暴自弃,“反正我成绩不好,也考不上重点高中……”这类言谈,是自杀式的无药可救性的自毁。它会让人丧失进行的动力。

要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识系统起来。大到整个物理的知识结构,小到力学的知识结构,甚至具体到章,如静力学的知识结构等等。这种弹性扩展思考方式,会把整个物理知识串通在一起,让人思考起来更容易。

十、重视语数与“副课”——认识学科间互补的重要性。

物理的计算要依靠数学,对学物理来说数学太重要了。没有数学这个计算工具物理学是步难行的。到大学后物理系的数学课与物理课是并重的。必须要学好数学,利用好数学这个强有力的工具。同样也要用好语文这门工具,它能帮助我们理解物理含义更准确。如果能把生物、地理等学生认为的“副课”学好,对学习物理也有十分重要的作用。因为所有学课间并不是独立存在的,而是相互关联的。而且现在学课综合性题目非常流行。

十一、注意学习中思维的发展与训练。

有的学生也十分想学,也确实在努力学习,这些老师也能看到眼里,可是成绩依然不是十分理想。反观之,听课认真,作业工整,笔记细致,但一换个角度,换个方法,这种学生就不知所从。这样的学生多数也不是完全因为笨,主要还是思维上出了问题。常见的思维性障碍如下:

1、先入为主的生活观念形成的思维障碍。

2、相近物理概念混淆形成的障碍。

3、类比不当形成的思维障碍。

4、物理公式数学化形成的思维障碍。

5、概念内涵和外延的模糊形成的思维障碍。

6、旧有知识的局限性和思维定势干扰形成的思维障碍。

2022年高考物理知识点相关:

我要回帖

更多关于 电商具体是做什么的 的文章

 

随机推荐