12680~7号键去年还有“和你做作业”的业务,今年键盘的顿号怎么打没有了。明年还会有吗?

Functional Domains within Fusion Proteins: Prospectives for Development of Peptide Inhibitors of Viral Cell Fusion | SpringerLink
This service is more advanced with JavaScript available, learn more at http://activatejavascript.org
Where do you prefer to publish?
Charitable donation for first 1000 responses.
Functional Domains within Fusion Proteins: Prospectives for Development of Peptide Inhibitors of Viral Cell FusionYechiel ShaiArticle
The entry of enveloped viruses into host cells is accomplished by fusion ofthe viral envelope and target plasma membrane and is mediated by fusionproteins. Recently, several functional domains within fusion proteins fromdifferent viral families were identified. Some are directly involved inconformational changes after receptor binding, as suggested by the recentrelease of crystallographically determined structures of a highly stablecore structure of the fusion proteins in the absence of membranes. However,in the presence of membranes, this core binds strongly to the membrane'ssurface and dissociates therein. Other regions, besides the N-terminal fusionpeptide, which include the core region and an internal fusion peptide inparamyxoviruses, are directly involved in the actual membrane fusion event,suggesting an “umbrella” like model for the membrane inducedconformational change of fusion proteins. Peptides resembling these regionshave been shown to have specific antiviral activity, presumably because theyinterfere with the corresponding domains within the viruses. Overall, thesestudies shed light into the molecular mechanism of membrane fusion induced byenvelope glycoproteins and suggest that fusion proteins from different viralfamilies share common structural and functional motifs.membrane fusion peptide–lipid interaction fluorescence viral fusion inhibitors antiviral peptides Unable to display preview.&Baker, K. A., Dutch, R. E., Lamb, R. A., and Jardetzky, T. S. (1999) Structural basis for paramyxovirusmediated membrane fusion. Mol. Cell
3: 309–319.Ben-Efraim, I., Kliger, Y., Hermesh, C., and Shai, Y. (1999) Membrane-induced step in the activation of Sendai virus fusion protein. J. Mol. Biol. 285: 609–625.Bentz, J. (2000) Membrane fusion mediated by coiled coils: a hypothesis. Biophys. J. 78: 886–900.Bernstein, H. B., et al. (1995) Oligomerization of the hydrophobic heptad repeat of gp41. J. Virol. 69: .Bessalle, R., Kapitkovsky, A., Gorea, A., Shalit, I., and Fridkin, M. (1990). All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett. 274: 151–155.Blacklow, S. C., Lu, M., and Kim, P. S. (1995) A trimeric subdomain of the Simian Immunodeficiency Virus enveloped glycoprotein. Biochemistry
34: 1.Bohm, C., Mohwald, H., Leiserowitz, L., Als-Nielsen, J., and Kjaer, K. (1993) Influence of chirality on the structure of phospholipid monolayers, Biophys. J. 64: 553–559.Bosch, M. L., et al. (1989) Identification of the fusion peptide of primate immunodeficiency viruses. Science
244: 694–697.Bradshaw, J. P., Darkes, M. J., Harroun, T. A., Katsaras, J., and Epand, R. M. (2000) Oblique membrane insertion of viral fusion peptide probed by neutron diffraction. Biochemistry
39:.Brasseur, R. (1991) Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J. Biol. Chem. 266:1.Brasseur, R., Vandenbranden, M., Cornet, B., Burny, A., and Ruysschaert, J.-M. (1990) Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins. Biochim. Biophys. Acta. 1029:267–273.Buckland, R., Malvoisin, E., Beauverger, P., and Wild, F. (1992) A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. J. Gen. Virol. 73:.Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C. (1994) Structure of influenza hemagglutinin at the pH of membrane fusion. Nature
371: 37–43.Burger, K. N., Wharton, S. A., Demel, R. A., and Verkleij, A. J. (1991) Interaction of influenza virus hemagglutinin with a lipid monolayer. A comparison of the surface activities of intact virions, isolated hemagglutinins, and a synthetic fusion peptide. Biochemistry
30: 1.Carr, C. M. and Kim, P. S. (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell
73: 823–832.Chambers, P., Pringle, C. R., and Easton, A. J. (1992) Sequence analysis of gene encoding the fusion glycoprotein of pneumonia virus of mice suggests possible conserved secondary structure elements in paramyxovirus fusion glycoproteins. J. Gen. Virol. 73:.Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S. (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell
89:263–273.Chan, D. C. and Kim, P. S. (1998) HIV entry and its inhibition. Cell
93:681–684.Chang, D. K., Cheng, S. F., and Chien, W. J. (1997) The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as a helix with a conserved glycine in the micelle-water interface. J. Virol. 71:.Cheetham, J. J., Nir, S., Johnson, E., Flanagan, T. D., and Epand, R. M. (1994). J. Biol. Chem. 269:.Chen, S. S. L., Lee, C. N., Lee, W. R., McIntosh, K., and Lee, T. H. (1993) Mutational analysis of the leucine zipper-like motif of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein. J. Virol. 67:.Chernomordik, L., Kozlov, M. M., and Zimmerberg, J. (1995) Lipids in biological membrane fusion. J. embr. Biol. 146:1–14.Chernomordik, L. V., Leikina, E., Frolov, V., Bronk, P., and Zimmerberg, J. (1997) An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell.Biol. 136:81–93.Clague, M. J., Knutson, J. R., Blumenthal, R., and Herrmann, A. (1991) Interaction of influenza hemagglutinin amino-terminal peptide with phospholipid vesicles: a fluorescence study. Biochemistry
30:.Colotto, A., Martin, I., Ruysschaert, J.-M., Sen, A., Hui, S. W., and Epand, R. M. (1996) Structural study of the interaction between the SIV fusion peptide and model membranes. Biochemistry
35:980–989.Corigliano, M. M., Xun, L. A., Ponnamperuma, C., Dalzoppo, D., Fontana, A., Kanmera, T., and Chaiken, I. M. (1985) Synthesis and properties of an all-D model ribonuclease S-peptide. Int.J.Pept.Protein Res. 25:225–231.Delahunty, M. D., Rhee, I., Freed, E. O., and Bonifacino, J. S. (1996) Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues. Virology
218:94–102.Dentino, A. R., Westerman, P. W., and Yeagle, P. L. (1995) A study of carbobenzoxy-D-phenylalaninephenylalanine-glycine, an inhibitor of membrane fusion, in phospholipid bilayers with multinuclear magnetic resonance. Biochim Biophys.Acta. 1235:213–220.Dimitrov, D. S. (2000) Cell biology of virus entry. Cell
101:697–702.Doms, R. W., Lamb, R. A., Rose, J. K., and Helenius, A. (1993) Folding and assembly of viral membrane proteins. Virology
193:545–562.Dubay, J. W., Roberts, S. J., Brody, B., and Hunter, E. (1992) Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 66:.Durell, S. R., Martin, I., Ruysschaert, J.-M., Shai, Y., and Blumenthal, R. (1997) What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion. Mol.Membr.Biol. 14:97–112.Dutch, R. E., Leser, G. P., and Lamb, R. A. (1999) Paramyxovirus fusion protein: characterization of the core trimer, a rod-shaped complex with helices in anti-parallel orientation. Virology
254:147–159.Earl, P. L., Doms, R. W., and Moss, B. (1990) Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA
87:648–652.Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A., and Kim, P. S. (1999) Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell
99:103–115.Elson, H. F., Dimitrov, D. S., and Blumenthal, R. (1994) A trans-dominant mutation in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41 inhibits membrane fusion when expressed in target cells. Mol.Membr.Biol. 11:165–169.Epand, R. F., Martin, I., Ruysschaert, J.-M., and Epand, R. M. (1994) Membrane orientation of the SIV fusion peptide determines its effect on bilayer stability and ability to promote membrane fusion. Biochem.Biophys.Res.Commun. 205:.Epand, R. M. (1998) Lipid polymorphism and protein-lipid interactions. Biochim.Biophys.Acta
1376:353–368.Epand, R. M., Epand, R. F., Richardson, C. D., and Yeagle, P. L. (1993) Structural requirements for the inhibition of membrane fusion by carbobenzoxy-D-Phe-Phe-Gly. Biochim.Biophys.Acta. 1152:128–134.Fass, D., Harrison, S. C., and Kim, P. S. (1996) Retrovirus envelope domain at 1.7 angstrom resolution. Nat.Struct.Biol. 3:465–469.Freed, E. O., Delwart, E. L., Buchschacher, G. L., Jr., and Panganiban, A. T. (1992) A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc.Natl.Acad.Sci.USA
89:70–74.Furuta, R. A., Wild, C. T., Weng, Y., and Weiss, C. D. (1998) Capture of an early fusion-active confirmation of HIV-1 gp41. Nature Struct.Biol. 5:276–279.Gallaher, W. R. (1987) Detection of a fusion peptide sequence in the transmembrane protein of human imunodeficiency virus. Cell
50:327–328.Gallaher, W. R., Ball, J. M., Garry, R. F., Griffin, M. C., and Montelaro, R. C. (1989) A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res.Hum.Retroviruses
5:431–440.Ghosh, J. K., Ovadia, M., and Shai, Y. (1997) A leucine zipper motif in the ectodomain of Sendai virus fusion protein assembles in solutions and in membranes and specifically binds biologically-active peptides and the virus. Biochemistry
36:1.Ghosh, J. K., Peisajovich, S. G., Ovadia, M., and Shai, Y. (1998) Structure-function study of a heptad repeat positioned near the transmembrane domain of Sendai virus fusion protein which blocks viruscell fusion. J.Biol.Chem. 273:2.Ghosh, J. K. and Shai, Y. (1998) A peptide derived from a conserved domain of Sendai virus fusion protein inhibits virus-cell fusion. A plausible mode of action. J.Biol.Chem. 273:.Ghosh, J. K., and Shai, Y. (1999) Direct evidence that the N-terminal heptad repeat of Sendai virus fusion protein participates in membrane fusion. J.Mol.Biol. 292:531–546.Ghosh, K. J., Peisajovich, S. G., and Shai, Y. (2000) Sendai virus internal fusion peptide: structure and functional characterization and a plausible mode of viral entry inhibition. Biochemistry (in press).Gray, C., Tatulian, S. A., Wharton, S. A., and Tamm, L. K. (1996) Effect of the N-terminal glycine on the secondary structure, orientation and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophys.J. 70:.Guy, H. R., Durell, S. R., Schoch, C., and Blumenthal, R. (1992) Analyzing the fusion process of influenza hemagglutinin by mutagenesis and molecular modeling. Biophys.J. 62:95–97.Han, X., Steinhauer, D. A., Wharton, S A., and Tamm, L. K. (1999) Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: Probing the role of hydrophobic residue size in the central region of the fusion peptide. Biochemistry
38:1.Hanein, D., Geiger, B., and Addahi, L. (1994) Differential adhesion of cells to enantiomorphous crystal surfaces. Science
263:.Harter, C., James, P., Bachi, T., Semenza, G., and Brunner, J. (1989) Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the ''fusion peptide''. J.Biol.Chem. 264:.Hetru, C., Letellier, L., Oren, Z., Hoffmann, J. A., and Shai, Y. (2000) Androctonin, a hydrophilic disulphide-bridged non-haemolytic anti-microbial peptide: a plausible mode of action. Biochem.J. 345:653–664.Hoekstra, D. and Kok, J. W. (1989) Entry mechanism of enveloped viruses. Implications for fusion of intracellular membranes. Biosci.Rep. 9:273–305.Homma, M. and Ohuchi, M. (1973) Trypsin action on the growth of sendai virus in tissue culture cells. J.Virol. 12:.Horvath, C. M. and Lamb, R. A. (1992) Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion. J.Virol. 66:.Hsu, M., Scheid, A., and Choppin, P. W. (1981) Activation of the Sendai virus fusion protein (f ) involves a conformational change with exposure of a new hydrophobic region. J.Biol.Chem. 256:.Hughson, F. M. (1995) Structural characterization of viral fusion proteins. Curr.Biol. 5:265–274.Ito, M., Nishio, M., Komada, H., Ito, Y., and Tsurudome, M. (2000) An amino acid in the heptad repeat 1 domain is important for the haemagglutin-neurominidase-independent fusing activity of simian virus 5 fusion protein. J.Gen.Virol. 81:719–727.Jiang, S., Lin, K., Strick, N., and Neurath, A. R. (1993) HIV-1 inhibition by a peptide. Nature
365:113.Jones, P. L., Korte, T., and Blumenthal, R. (1998) Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J.Biol.Chem. 273:404–409.Joshi, S. B., Dutch, R. E., and Lamb, R. A. (1988) A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology
248:20–34.Kelsey, D. R., Flanaghan, T. D., Young, J., and Yeagle, P. L. (1990) Peptide inhibitors of enveloped virus infection inhibit phospholipid vesicle fusion and Sendai virus fusion with phospholipid vesicles. J.Biol.Chem. 265:1.Kilby, J. M. et al. (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat.Med. 4:.Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R., and Shai, Y. (1997) Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell fusion. Structure-function study. J.Biol.Chem. 272:1.Kliger, Y. et al. (2000a). 2nd Frederick workshop on the Cell biology of viral entry. NCI-Frederick Cancer Research and Development Centre. Frederick, USA.Kliger, Y., Pesiajovich, S. G., Blumenthal, R., and Shai, Y. (2000b). Membrane-induced conformational change during the activation of HIV-1 gp41. J.Mol.Biol. (in press).Kliger, Y. and Shai, Y. (2000) Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J.Mol.Biol. 295:163–168.Kliger, Y. et al. (2000c) Mode of action of an antiviral peptide from HIV-1: inhibition at a post lipidmixing stage. J.Biol.Chem. (in press).Kobe, B., Center, R. J., Kemp, B. E., and Poumbourios, P. (1999) Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc.Natl.Acad.Sci.USA
96:.Kozlov, M. M. and Chernomordik, L. V. (1998) A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys.J. 75:.Lambert, D. M. et al. (1996) Peptides from conserved regions of paramyxovirus fusion (F)proteins are potent inhibitors of viral fusion. Proc.Natl.Acad.Sci.USA
93:.Lear, J. D. and DeGrado, W. F. (1987) Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. J.Biol.Chem. 262:.Lemmon, M. A. and Engelman, D. M. (1994). Specificity and promiscuity in membrane helix interactions. Q.Rev.Biophys. 27:157–218.Lemmon, M. et al. (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J.Biol.Chem. 267:.Lu, M., Blacklow, S. C., and Kim, P. S. (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat.Struct.Biol. 2:.Malashkevich, V. N., Chan, D. C., Chutkowski, C. T., and Kim, P. S. (1998) Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc.Natl.Acad.Sci USA
95:.Malashkevich, V. N., Schneider, B. J., McNally, M. L., Milhollen, M. A., Pang, J. X., and Kim, P. S. (1999) Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9 A° resolution. Proc. Natl. Acad. Sci. USA
96:.Martin, I. et al. (1991) Fusogenic activity of SIV (simian immunodeficiency virus) peptides located in the GP32 NH2 terminal domain. Biochem.Biophys.Res.Commun. 175:872–879.Martin, I. et al. (1994) Correlation between fusogenicity of synthetic modified peptides corresponding to the NH2-terminal extremity of simian immunodeficiency virus gp32 and their mode of insertion into the lipid bilayer: an infrared spectroscopy study. J.Virol. 68:.Martin, I., Schaal, H., Scheid, A., and Ruysschaert, J.-M. (1996) Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer. J.Virol. 70:298–304.Merrifield, E. L., Mitchell, S. A., Ubach, J., Boman, H. G., Andreu, D., and Merrifield, R. B. (1995) Denantiomers of 15-residue cecropin A-melittin hybrids. Int. J. Pept. Protein Res. 46:214–220.Milton, R. C., Milton, S. C., and Kent, S. B. (1992) Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected] [published erratum appears in Science
257:147]. Science
256:.Mu?oz-Barroso, I., Durell, S., Sakaguchi, K., Appella, E., and Blumenthal, R. (1998) Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J.Cell Biol. 140:315–323.Nieva, J. L., Nir, S., Muga, A., Goni, F. M., and Wilschut, J. (1994) Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. Biochemistry
33:.Owens, B. J., Anantharamaiah, G. M., Kahlon, J. B., Srinivas, R. V., Compans, R. W., and Segrest, J. P. (1990) Apolipoprotein A-I and its amphipathic helix peptide analogues inhibit human imunodeficiency virus-induced syncytium formation. J. Clin. Invest. 86:.Pak, C. C,, Krumbiegel, M., Blumenthal, R., and Raviv, Y. (1994) Detection of influenza hemagglutinin interaction with biological membranes by photosensitized activation of [125I]iodonaphthylazide. J. Biol. Chem. 269:1.Pécheur, E. I., Sainte-Marie, J., Bienvenüe, A., and Hoekstra, D. (1999) Peptides and membrane fusion: towards an understanding of the moelcular mechanism of protein-induced fusion. J.Membr.Biol. 167:1–17.Peisajovich, S. G., Epand, R. F., Pritsker, M., Shai, Y., and Epand, R. M. (2000a) The polar region consecutive to the HIV fusion peptide participates in membrane fusion. Biochemistry
39:.Peisajovich, S. G., Samuel, O., and Shai, Y. (2000b). Paramyxovirus F1 protein has two fusion peptides: Implications for the mechanism of membrane fusion. J.Mol.Biol. 296:.Pereira, F. B., Goni, F. M., and Nieva, J. L. (1995) Liposome destabilization induced by the HIV-1 fusion peptide effect of a single amino acid substitution. FEBS Lett
362:243–246.Pereira, F. B., Goni, F. M., and Nieva, J. L. (1997) Membrane fusion induced by the HIV type 1 fusion peptide: modulation by factors affecting glycoprotein 41 activity and potential anti-HIV compounds. AIDS Res.Hum.Retroviruses
13:.Pinter, A. et al. (1989) Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J.Virol. 63:.Pritsker, M., Jones, P., Blumenthal, R., and Shai, Y. (1998) A synthetic all D-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 recognizes the wild-type fusion peptide in the membrane and inhibits HIV-1 envelope glycoprotein-mediated cell fusion. Proc.Natl.Acad.Sci.USA
95:.Pritsker, M., Rucker, J., Hoffman, T. L., Doms, R. W., and Shai, Y. (1999) Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Biochemistry
38:1.Rabenstein, M., and Shin, Y. K. (1995) A peptide from the heptad repeat of human immunodeficiency virus gp41 shows both membrane binding and coiled-coil formation. Biochemistry
34:1.Rapaport, D., Ovadia, M., and Shai, Y. (1995) A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendia virus-cell fusion: An emerging similarity with functional domains of other viruses. EMBO J. 14:.Rapaport, D. and Shai, Y. (1994) Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes. J.Biol.Chem. 269:1.Reitter, J. N., Sergel, T., and Morrison, T. G. (1995) Mutational analysis of the leucine zipper motif in the Newcastle disease virus fusion protein. J.Virol. 69:.Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., and Harrison, S. C. (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution [see comments]. Nature
375:291–298.Richardson, C. D., Scheid, A., and Choppin, P. W. (1980) Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides Virology
105:205–222.Ruigrok, R. W. et al. (1988) Studies on the structure of the influenza virus hemagglutinin at the pH of membrane fusion. J.Gen.Virol. 69:.Ruiz-Arguello, M. B., Goni, F. M., Pereira, F. B., and Nieva, J. L. (1998) Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J.Virol. 72:.Salzwedel, K., West, J. T., and Hunter, E. (1990) A conserved tryptophan-rich motif in the membraneproximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Envmediated fusion and virus infectivity. J.Virol. 73:.Schawaller, M., Smith, G. E., Skehel, J. J., and Wiley, D. C. (1989) Studies with crosslinking reagents on the oligomeric structure of the Env glycoprotein of HIV. Virology
172:367–369.Scheid, A. and Choppin, P. W. (1977) Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology
80:54–60.Sergel, T. A., McGinnes, L. W., and Morrison, T. G. (2000) A single amino acid change in the Newcastle disease virus fusion protein alters the requirements for HN protein in fusion. J.Virol. 74:.Shai, Y. (1995) Molecular recognition between membrane-spanning polypeptides. Trends. Biochem. Sci. 20:460–464.Simmerman, H. K. B., Kobayashi, Y. M., Autry, J. M., and Jones, L. R. (1996) A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms coiled-core pore structure. J. Biol. Chem. 271:.Skehel, J. J. et al. (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc.Natl.Acad.Sci.USA
79:968–972.Skehel, J. J. and Wiley, D. C. (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell
95:871–874.Slepushkin, V. A. et al. (1993) Inhibition of human immunodeficiency virus type 1 (HIV-1) penetration into target cells by synthetic peptides mimicking the N-terminus of the HIV-1 transmembrane glycoprotein. Virology
194:294–301.Slepushkin, V. et al. (1990) Interaction of human immunodeficiency virus (HIV-1) fusion peptides with artificial lipid membranes. Biochem.Biophys.Res.Commun.:952–957.Stegmann, T. (1993) Membrane fusion-inhibiting peptides do not inhibit influenza virus fusion or the Ca(2C)-induced fusion of negatively charged vesicles. J.Biol.Chem. 268:2.Stegmann, T., Bartoldus, I., and Zumbrunn, J. (1995) Influenza hemagglutinin-mediated membrane fusion: influence of receptor binding on the lag phase preceding fusion. Biochemistry
34:.Stegmann, T., Doms, R. W., and Helenius, A. (1989) Protein-mediated membrane fusion. Annu. Rev. Biophys. Chem.
18:187–211.Tatulian, S. A., Hinterdorfer, P., Baber, G., and Tamm, L. K. (1995) Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. EMBO J. 14:.Tsurodome, M., Glück, R., Graf, R., Falchetto, R., Schaller, U., and Brunner, J. (1992) Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. J.Biol.Chem. 267:2.Vanini, S., Longhi, R., Lazzarin, A., Vigo, E., Siccardi, A. G., and Viale, G. (1993) Discrete regions of HIV-1 gp41 defined by syncytia-inhibiting affinity purified human antibodies. AIDS
7:167–174.Von Heijne, G. (1994) Membrane proteins: From sequence to structure., Annu. Rev. Biophys. Biomol. Struct.
23:167–192.Voneche, V. et al. (1992) Fusogenic segments of bovine leukemia virus and simian immunodeficiency virus are interchangeable and mediate fusion by means of oblique insertion in the lipid bilayer of their target cells. Proc.Natl.Acad.Sci.USA
89:.Wade, D. et al. (1990) All D-amino acid-containing channel-forming antibiotic peptides. Proc. Natl. Acad. Sci. USA
87:.Weiss, C. D., Levy, J. A., and White, J. M. (1990) Oligomeric organization of gp120 on infections human immunodeficiency virus type 1 particles. J.Virol. 64:.Weissenhorn, W., Carfi, A., Lee, K. H., Skehel, J. J., and Wiley, D. C. (1998) Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell
2:605–616.Weissenhorn, W., Dessen, A., Calder, L. J., Harison, S. C., Skehel, J. J., and Wiley, D. C. (1999) Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 16:3–9.Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature
387:426–430.Weissenhorn, W. et al. (1996) The ectodomain of HIV-1 Env subunit gp41 forms a soluble, alpha-helical, rod-like oligomer in the absence of gp120 and the N-terminus fusion peptide. EMBO J. 15:.Wharton, S. A., Martin, S. R., Ruigrok, R. W., Skehel, J. J., and Wiley, D. C. (1988) Membrane fusion by peptide analogues of influenza virus hemagglutinin. J.Gen.Virol. 69:.Wharton, S. A., Skehel, J. J., and Wiley, D. C. (2000) Temperature dependence of fusion by Sendai virus. Virology
271:71–78.White, J. M. (1990) Viral and cellular membrane fusion proteins. Ann. Rev. Physiol. 52:75–97.White, J. M. (1992) Membrane fusion. Science
258:917–924.Wild, C. et al. (1994a) Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc.Natl.Acad.Sci.USA
91:1.Wild, C., Greenwell, T., and Matthews, T. (1993) A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res.Hum.Retroviruses
9:.Wild, C., Greenwell, T., Shugars, D., Rimsky-Clarke, L., and Matthews, T. (1995) The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res.Hum.Retroviruses
11:323–325.Wild, C., Oas, T., McDanal, C., Bolognesi, D., and Matthews, T. (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc.Natl.Acad.Sci.USA
89:1.Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B., and Matthews, T. J. (1994b) Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc.Natl.Acad.Sci.USA
91:.Yang, Z. N., Mueser, T. C., Kaufman, J., Stahl, S. J., Wingfield, P. T., and Hyde, C. C. (1999) The crystal structure of the SIV gp41 ectodomain at 1.47 A resolution. J. Struct. Biol. 126:131–144.Yeagle, P. L., Epand, R. M., Richardson, C. D., and Flanagan, T. D. (1991) Effects of the 'fusion peptide' from measles virus on the structure of N-methyl dioleoylphosphatidylethanolamine membranes and their fusion with Sendai virus. Biochim.Biophys.Acta. 1065:49–53.Yeagle, P. L., Young, J., Hui, S. W. & Epand, R. M. (1992) On the mechanism of inhibition of viral and vesicle membrane fusion by carbobenzoxy-D-phenylalanyl-L-phenylalanylglycine. Biochemistry
31:.Young, J. K., Hicks, R. P., Wright, G. E., and Morrison, T. G. (1997) Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology
238:291–304.Young, J. K., Li, D., Abramowitz, M. C., and Morrison, T. G. (1999) Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J.Virol. 73:.Yu, Y. G., King, D. S., and Shin, Y. K. (1994) Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes. Science
266:274–276.Zimmerberg, J., Curran, M., and Cohen, F. S. (1991) A lipid_protein complex hypothesis for exocytotic fusion pore formation. Ann. NY Acad. Sci. 635:307–317.Yechiel Shai11.Department of Biological ChemistryThe Weizmann Institute of ScienceRehovotIsrael. E-mail
We use cookies to improve your experience with our site.

我要回帖

更多关于 关键第四号 的文章

 

随机推荐