welcomtoclubjuliaann to lcc 是不是骗人的

welcom是什么意思_welcom在线翻译、解释、发音、同义词、反义词_英语单词大全_911查询
welcom是什么意思
输入英文单词或中文词语查询其翻译
welcom是什么意思 welcom在线翻译 welcom什么意思 welcom的意思 welcom的翻译 welcom的解释 welcom的发音 welcom的同义词 welcom的反义词 welcom的例句
welcomwelcom 双语例句1. WORMLY WELCOM FRANCH GUESTS VISIT OUR FACTORY!&&&&热烈欢迎法国客商来我厂参观考察!2. For honored guest, they will wear the flower ring to your neck for welcom.&&&&如你的脖子上被戴上了一个花环,这是印度人对你的尊敬。3. B: you're welcom.&&&&别客气,欢迎你再来。4. Tom:You're welcom.&&&&汤姆:不客气。5. Hell, welcom to xingteng caster, the phone is connected in, please hold on!&&&&您好!欢迎致电兴腾脚轮,电话正在接通中,请稍候!6. 911查询·英语单词6. I'm afraid I've overstayed my welcom.&&&&我恐怕已经在这待了太久了。7. Experience with equipment like Biacore/ProteOn, Akta, or FACS would be of advantage, Strong background and experience in protein/antibody engineering field like phage display library construction, high throughput selection, expression and characterization of the monoclonal candidates selected is welcom.&&&&英语口语流利,书面表达能力强,掌握其他语言者会优先考虑;拥有3年左右工作经验;拥有海外留学或在国际化环境中实习或工作的经历;出色的沟通技能及具备领导潜质思想开通,责任心强,并具有团队合作精神在工作地点上具有灵活性。8. If you have passion for work and life, welcom to join us!&&&&如果您对工作和生活充满热情,请加入我们!9. 9. You are welcom to come to our school to study Chinese.&&&&欢迎你来我们学校学习汉语。10. \u\u006E\u\u002E\u\u\u\u002E\uF\u006D10. If you want to learn Chinese or you would like to speak English with me, Welcom to my world.&&&&我正在练习英语,也欢迎想要学中文的朋友,希望我可以帮助到你。11. 11. We have parties and not go to bed until midnight to welcom the new year.&&&&&&我们在新年的前一天有聚会,直到到了新年的第一天才会去睡觉。12. I alway think i am welcom in school.&&&&&&我总是认为我在学校受欢迎。13. He had visited many places, where he went to, he was affected by warmly welcom&&&&&&他访问了许多地方,所到之处,都受到了热情的欢迎。14. welcom14. To extend my welcom e to all the g uests from domestic and aboa rd, especially those&&&&&&经到加拿大、美国、Hungry 这些离这美丽宝岛很远的地方。15. welcom的反义词15. Welcom to China, and I`m Elle, the manager of Integrated Management Dpt.&&&&&&(欢迎您来中国,我是TAT深圳综合部的经理Elle16. welcom的翻译16. AT PRESENT, WE ARE FINDING AGENTS AT HOME, WELCOM TO JOIN US.&&&&&&我们坚持以人为本,共营共荣的经营理念,愿与您共同开拓甜蜜的事业。17. Welcom to the Blog of DHU Tennis Club!&&&&&&欢迎来到东华大学网球社的博客!welcom 单语例句1. Beyonce got a warm welcom when she arrived this week in Japan to kick off her world tour.welcom是什么意思,welcom在线翻译,welcom什么意思,welcom的意思,welcom的翻译,welcom的解释,welcom的发音,welcom的同义词,welcom的反义词,welcom的例句,welcom的相关词组,welcom意思是什么,welcom怎么翻译,单词welcom是什么意思常用英语教材考试英语单词大全 (7本教材)
出国英语单词大全 (5本教材)
大学英语单词大全 (13本教材)
高中英语单词大全 (6本教材)
初中英语单词大全 (13本教材)
小学英语单词大全 (33本教材)
别人正在查
911查询 全部查询 网址:
(共19个)占卜求签
(共17个)民俗文化
(共16个)交通出行
(共10个)学习应用
(共26个)休闲娱乐
(共10个)站长工具
(共7个)身体健康
&2018  京ICP备号-6 京公网安备30 
微信扫一扫关注From Wikipedia, the free encyclopedia
Life Cycle Assessment Overview
Life-cycle assessment (LCA, also known as life-cycle analysis, ecobalance, and cradle-to-grave analysis) is a technique to assess environmental impacts associated with all the stages of a product's life from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling. Designers use this process to help critique their products. LCAs can help avoid a narrow outlook on environmental concerns by:
Compiling an inventory of relevant energy and material inputs and en
Evaluating the potential impacts associated with identified
Interpreting the results to help make a more informed decision.
The goal of LCA is to compare the full range of environmental effects assignable to products and services by quantifying all inputs and outputs of material flows and assessing how these material flows affect the environment. This information is used to improve processes, support policy and provide a sound basis for informed decisions.
The term life cycle refers to the notion that a fair,
assessment requires the assessment of raw-material production, manufacture, , use and
including all intervening transportation steps necessary or caused by the product's existence.
There are two main types of LCA. Attributional LCAs seek to establish (or attribute) the burdens associated with the production and use of a product, or with a specific service or process, at a point in time (typically the recent past). Consequential LCAs seek to identify the environmental consequences of a decision or a proposed change in a system under study (oriented to the future), which means that market and economic implications of a decision may have to be taken into account. Social LCA is under development as a different approach to
intended to assess social implications or potential impacts. Social LCA should be considered as an approach that is complementary to environmental LCA.
The procedures of life cycle assessment (LCA) are part of the
environmental management standards: in ISO
and . (ISO 14044 replaced earlier versions of ISO 14041 to ISO 14043.)
product life cycle assessments can also comply with specifications such as
2050 and the .
Illustration of LCA phases
According to the ISO 14040 and 14044 standards, a Life Cycle Assessment is carried out in four distinct phases as illustrated in the figure shown to the right. The phases are often interdependent in that the results of one phase will inform how other phases are completed.
An LCA starts with an explicit statement of the goal and scope of the study, which sets out the context of the study and explains how and to whom the results are to be communicated. This is a key step and the ISO standards require that the goal and scope of an LCA be clearly defined and consistent with the intended application. The goal and scope document therefore includes technical details that guide subsequent work:
the functional unit, which defines what precisely is being studied and quantifies the service delivered by the product system, providing a reference to which the inputs and outputs can be related. Further, the functional unit is an important basis that enables alternative goods, or services, to be compared and analyzed. So to explain this a functional system which is inputs, processes and outputs contains a functional unit, that fulfills a function, for example paint is covering a wall, making a functional unit of 1m? covered for 10 years. The functional flow would be the items necessary for that function, so this would be a brush, tin of paint and the paint itself.
the system boundaries; which are delimitations of which processes that should be included in the analysis of a product system.
any assumptions and limitations;
the allocation methods used to partition the environmental load of a process when several products or functions sh allocation is commonly dealt with in one of three ways: system expansion, substitution and partition. Doing this is not easy and different methods may give different results
the impact categories chosen for example human , , , .
This is an example of a Life-cycle inventory (LCI) diagram
Life Cycle Inventory (LCI) analysis involves creating an inventory of flows from and to nature for a product system. Inventory flows include inputs of water, energy, and raw materials, and releases to air, land, and water. To develop the inventory, a flow model of the technical system is constructed using data on inputs and outputs. The flow model is typically illustrated with a flow chart that includes the activities that are going to be assessed in the relevant supply chain and gives a clear picture of the technical system boundaries. The input and output data needed for the construction of the model are collected for all activities within the system boundary, including from the supply chain (referred to as inputs from the technosphere).
The data must be related to the functional unit defined in the goal and scope definition. Data can be presented in tables and some interpretations can be made already at this stage. The results of the inventory is an LCI which provides information about all inputs and outputs in the form of elementary flow to and from the environment from all the unit processes involved in the study.
Inventory flows can number in the hundreds depending on the system boundary. For product LCAs at either the generic (i.e., representative industry averages) or brand-specific level, that data is typically collected through survey questionnaires. At an industry level, care has to be taken to ensure that questionnaires are completed by a representative sample of producers, leaning toward neither the best nor the worst, and fully representing any regional differences due to energy use, material sourcing or other factors. The questionnaires cover the full range of inputs and outputs, typically aiming to account for 99% of the mass of a product, 99% of the energy used in its production and any environmentally sensitive flows, even if they fall within the 1% level of inputs.
One area where data access is likely to be difficult is flows from the technosphere. The technosphere is more simply defined as the man-made world. Considered by geologists as secondary resources, these resources are in theory 100% however, in a practical sense, the primary goal is salvage. For an LCI, these technosphere products (supply chain products) are those that have been produced by man and unfortunately those completing a questionnaire about a process which uses a man-made product as a means to an end will be unable to specify how much of a given input they use. Typically, they will not have access to data concerning inputs and outputs for previous production processes of the product. The entity undertaking the LCA must then turn to secondary sources if it does not already have that data from its own previous studies. National databases or data sets that come with LCA-practitioner tools, or that can be readily accessed, are the usual sources for that information. Care must then be taken to ensure that the secondary data source properly reflects regional or national conditions.
Process LCA
Economic Input Output LCA
Hybrid Approach
Inventory analysis is followed by impact assessment. This phase of LCA is aimed at evaluating the significance of potential environmental impacts based on the LCI flow results. Classical life cycle impact assessment (LCIA) consists of the following mandatory elements:
selection of impact categories, category indicators, and cha
the classification stage, where the inventory parameters are sorted and assigned to specif and
impact measurement, where the categorized LCI flows are characterized, using one of many possible LCIA methodologies, into common equivalence units that are then summed to provide an overall impact category total.
In many LCAs, characterization concludes the LCIA this is also the last compulsory stage according to ISO . However, in addition to the above mandatory LCIA steps, other optional LCIA elements – , grouping, and weighting – may be conducted depending on the goal and scope of the LCA study. In normalization, the results of the impact categories from the study are usually compared with the total impacts in the region of interest, the U.S. for example.
consists of sorting and possibly
the impact categories. During , the different environmental impacts are weighted relative to each other so that they can then be summed to get a single number for the total environmental impact. ISO
generally advises against weighting, stating that “weighting, shall not be used in LCA studies intended to be used in comparative assertions intended to be disclosed to the public”. This advice is often ignored, resulting in comparisons that can reflect a high degree of subjectivity as a result of weighting.[]
Life cycle impacts can also be categorized under the several phases of the development, production, use, and disposal of a product. Broadly speaking, these impacts can be divided into "First Impacts," use impacts, and end of life impacts. "First Impacts" include extraction of raw materials, manufacturing (conversion of raw materials into a product), transportation of the product to a market or site, construction/installation, and the beginning of the use or occupancy. Use impacts include physical impacts of operating the product or facility (such as energy, water, etc.), maintenance, renovation and repairs (required to continue to use the product or facility). End of life impacts include demolition and processing of waste or recyclable materials.
Life Cycle Interpretation is a systematic technique to identify, quantify, check, and evaluate information from the results of the life cycle inventory and/or the life cycle impact assessment. The results from the inventory analysis and impact assessment are summarized during the interpretation phase. The outcome of the interpretation phase is a set of conclusions and recommendations for the study. According to ISO , the interpretation should include:
identification of significant issues based on the results of the LCI and LCIA phases of an LCA;
evaluation of the study considering completeness, sensitivity an and
conclusions, limitations and recommendations.
A key purpose of performing life cycle interpretation is to determine the level of confidence in the final results and communicate them in a fair, complete, and accurate manner. Interpreting the results of an LCA is not as simple as "3 is better than 2, therefore Alternative A is the best choice"! Interpreting the results of an LCA starts with understanding the accuracy of the results, and ensuring they meet the goal of the study. This is accomplished by identifying the data elements that contribute significantly to each impact category,
of these significant data elements, assessing the completeness and consistency of the study, and drawing conclusions and recommendations based on a clear understanding of how the LCA was conducted and the results were developed.
More specifically, the best alternative is the one that the LCA shows to have the least cradle-to-grave environmental negative impact on land, sea, and air resources.
Based on a survey of LCA practitioners carried out in 2006 LCA is mostly used to support business strategy (18%) and R&D (18%), as input to product or process design (15%), in education (13%) and for labeling or product declarations (11%). LCA will be continuously integrated into the built environment as tools such as the European ENSLIC Building project guidelines for buildings or developed and implemented, which provide practitioners guidance on methods to implement LCI data into the planning and design process.
Major corporations all over the world are either undertaking LCA in house or commissioning studies, while governments support the development of national databases to support LCA. Of particular note is the growing use of LCA for ISO Type III labels called Environmental Product Declarations, defined as "quantified environmental data for a product with pre-set categories of parameters based on the ISO 14040 series of standards, but not excluding additional environmental information". These third-party certified LCA-based labels provide an increasingly important basis for assessing the relative environmental merits of competing products. Third-party certification plays a major role in today's industry. Independent certification can show a company's dedication to safer and environmental friendlier products to customers and NGOs.
LCA also has major roles in , integrated
and pollution studies. A recent study evaluated the LCA of a laboratory scale plant for oxygen enriched air production coupled with its economic evaluation in an holistic eco-design standpoint.
A life cycle analysis is o therefore, it is crucial that data used for the completion of a life cycle analysis are accurate and current. When comparing different life cycle analyses with one another, it is crucial that equivalent data are available for both products or processes in question. If one product has a much higher availability of data, it cannot be justly compared to another product which has less detailed data.
There are two basic types of LCA data – unit process data and environmental input-output data (EIO), where the latter is based on national economic input-output data. Unit process data are derived from direct surveys of companies or plants producing the product of interest, carried out at a unit process level defined by the system boundaries for the study.
Data validity is an ongoing concern for life cycle analyses. Due to
and the rapid pace of , new materials and manufacturing methods are continually being introduced to the market. This makes it both very important and very difficult to use up-to-date information when performing an LCA. If an LCA’s conclusions are to be valid, the however, the data-gathering process takes time. If a product and its related processes have not undergone significant revisions since the last LCA data was collected, data validity is not a problem. However,
can be redesigned as often as every 9 to 12 months, creating a need for ongoing data collection.
The life cycle considered usually consists of a number of stages including: materials extraction, processing and manufacturing, product use, and product disposal. If the most environmentally harmful of these stages can be determined, then impact on the environment can be efficiently reduced by focusing on making changes for that particular phase. For example, the most energy-intensive life phase of an airplane or car is during use due to fuel consumption. One of the most effective ways to increase fuel efficiency is to decrease vehicle weight, and thus, car and airplane manufacturers can decrease environmental impact in a significant way by replacing heavier materials with lighter ones such as aluminium or carbon fiber-reinforced elements. The reduction during the use phase should be more than enough to balance additional raw material or .
Data sources are typically large databases, it is not appropriate to compare two options if different data sources have been used to source the data. Data sources include: soca
EuGeos' 15804-IA
ESU World Food
LC-Inventories.ch
Social Hotspots
bioenergiedat
Agribalyse
Agri-footprint
Comprehensive Environmental Data Archive (CEDA)
Calculations for impact can then be done by hand, but it is more usual to streamline the process by using software. This can range from a simple spreadsheet, where the user enters the data manually to a fully automated program, where the user is not aware of the source data.
Cradle-to-grave is the full Life Cycle Assessment from resource extraction ('cradle') to use phase and disposal phase ('grave'). For example, trees produce paper, which can be recycled into low-energy production
(fiberised paper) , then used as an energy-saving device in the ceiling of a home for 40 years, saving 2,000 times the
energy used in its production. After 40 years the
fibers are replaced and the old fibers are disposed of, possibly incinerated. All inputs and outputs are considered for all the phases of the life cycle.
Cradle-to-gate is an assessment of a partial product life cycle from resource extraction (cradle) to the factory gate (i.e., before it is transported to the consumer). The use phase and disposal phase of the product are omitted in this case. Cradle-to-gate assessments are sometimes the basis for
(EPD) termed business-to-business EDPs. One of the significant uses of the cradle-to-gate approach compiles the life cycle inventory (LCI) using cradle-to-gate. This allows the LCA to collect all of the impacts leading up to resources being purchased by the facility. They can then add the steps involved in their transport to plant and manufacture process to more easily produce their own cradle-to-gate values for their products.
Cradle-to-cradle is a specific kind of cradle-to-grave assessment, where the end-of-life disposal step for the product is a
process. It is a method used to minimize the environmental impact of products by employing sustainable production, operation, and disposal practices and aims to incorporate social responsibility into product development. From the recycling process originate new, identical products (e.g., asphalt pavement from discarded asphalt pavement, glass bottles from collected glass bottles), or different products (e.g., glass wool insulation from collected glass bottles).
Allocation of burden for products in open loop production systems presents considerable challenges for LCA. Various methods, such as the
approach have been proposed to deal with the issues involved.
Gate-to-gate is a partial LCA looking at only one value-added process in the entire production chain. Gate-to-gate modules may also later be linked in their appropriate production chain to form a complete cradle-to-gate evaluation.
Well-to-wheel is the specific LCA used for
and vehicles. The analysis is often broken down into stages entitled "well-to-station", or "well-to-tank", and "station-to-wheel" or "tank-to-wheel", or "plug-to-wheel". The first stage, which incorporates the feedstock or fuel production and processing and fuel delivery or energy transmission, and is called the "upstream" stage, while the stage that deals with vehicle operation itself is sometimes called the "downstream" stage. The well-to-wheel analysis is commonly used to assess total energy consumption, or the
impact of ,
and , including their , and the fuels used in each of these transport modes. WtW analysis is useful for reflecting the different efficiencies and emissions of energy technologies and fuels at both the upstream and downstream stages, giving a more complete picture of real emissions.
The well-to-wheel variant has a significant input on a model developed by the . The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model was developed to evaluate the impacts of new fuels and vehicle technologies. The model evaluates the impacts of fuel use using a well-to-wheel evaluation while a traditional cradle-to-grave approach is used to determine the impacts from the vehicle itself. The model reports energy use, , and six additional pollutants:
with size smaller than 10 micrometre (PM10), particulate matter with size smaller than 2.5 micrometre (PM2.5), and
Quantitative values of
emissions calculated with the WTW or with the LCA method can differ, since the LCA is considering more emission sources. In example, while assessing the GHG emissions of a
in comparison with a conventional internal combustion engine vehicle, the WTW (accounting only the GHG for manufacturing the fuels) finds out that an electric vehicle can save the 50-60% of GHG , while an hybrid LCA-WTW method, considering also the GHG due to the manufacturing and the end of life of the battery gives GHG emission savings 10-13% lower, compared to the WTW.
Economic input–output LCA () involves use of aggregate sector-level data on how much environmental impact can be attributed to each sector of the economy and how much each sector purchases from other sectors. Such analysis can account for long chains (for example, building an automobile requires energy, but producing energy requires vehicles, and building those vehicles requires energy, etc.), which somewhat alleviates the scoping problem of process LCA; however, EIOLCA relies on sector-level averages that may or may not be representative of the specific subset of the sector relevant to a particular product and therefore is not suitable for evaluating the environmental impacts of products. Additionally the translation of economic quantities into environmental impacts is not validated.
While a conventional LCA uses many of the same approaches and strategies as an Eco-LCA, the latter considers a much broader range of ecological impacts. It was designed to provide a guide to wise management of human activities by understanding the direct and indirect impacts on ecological resources and surrounding ecosystems. Developed by Ohio State University Center for resilience, Eco-LCA is a methodology that quantitatively takes into account regulating and supporting services during the life cycle of economic goods and products. In this approach services are categorized in four main groups: supporting, regulating, provisioning and cultural services.
of a system is the maximum useful work possible during a process that brings the system into equilibrium with a heat reservoir. Wall
clearly states the relation between exergy analysis and resource accounting. This intuition confirmed by DeWulf
and Sciubba
lead to Exergo-economic accounting
and to methods specifically dedicated to LCA such as Exergetic material input per unit of service (EMIPS). The concept of material input per unit of service (MIPS) is quantified in terms of the second law of thermodynamics, allowing the calculation of both resource input and service output in exergy terms. This exergetic material input per unit of service (EMIPS) has been elaborated for transport technology. The service not only takes into account the total mass to be transported and the total distance, but also the mass per single transport and the delivery time.
Life cycle energy analysis (LCEA) is an approach in which all
inputs to a product are accounted for, not only direct energy inputs during manufacture, but also all energy inputs needed to produce components, materials and services needed for the manufacturing process. An earlier term for the approach was energy analysis.
With LCEA, the total life cycle energy input is established.
It is recognized that much energy is lost in the production of energy commodities themselves, such as ,
or high-quality . Net energy content is the energy content of the product minus energy input used during extraction and , directly or indirectly. A controversial early result of LCEA claimed that manufacturing
requires more energy than can be recovered in using the solar cell[]. The result was refuted. Another new concept that flows from life cycle assessments is . Energy Cannibalism refers to an effect where rapid growth of an entire energy-intensive industry creates a need for
that uses (or cannibalizes) the energy of existing power plants. Thus during rapid growth the industry as a whole produces no energy because new energy is used to fuel the
of future power plants. Work has been undertaken in the UK to determine the life cycle energy (alongside full LCA) impacts of a number of renewable technologies.
If materials are incinerated during the disposal process, the energy released during burning can be harnessed and used for electricity production. This provides a low-impact energy source, especially when compared with coal and natural gas While incineration produces more greenhouse gas emissions than landfilling, the waste plants are well-fitted with filters to minimize this negative impact. A recent study comparing energy consumption and greenhouse gas emissions from landfilling (without energy recovery) against incineration (with energy recovery) found incineration to be superior in all cases except for when
is recovered for electricity production.
A criticism of LCEA is that it attempts to eliminate mo that is replace the currency by which economic decisions are made with an energy currency.[] It has also been argued that energy efficiency is only one consideration in deciding which alternative process to employ, and that it should not be elevated to the only criterion for determining environ for example, simple energy analysis does not take into account the renewability of energy flows or the toxici however the life cycle assessment does help companies become more familiar with environmental properties and improve their environmental system. Incorporating Dynamic LCAs of renewable energy technologies (using sensitivity analyses to project future improvements in renewable systems and their share of the power grid) may help mitigate this criticism.
In recent years, the literature on life cycle assessment of
has begun to reflect the interactions between the current
and future . Some papers have focused on
life cycle, while others have focused on
(CO2) and other . The essential critique given by these sources is that when considering , the growing nature of the power grid must be taken into consideration. If this is not done, a given class of
may emit more CO2 over its lifetime than it mitigates.
A problem the energy analysis method cannot resolve is that different energy forms (, ,
etc.) have different quality and value even in natural sciences, as a consequence of the two main laws of . A thermodynamic measure of the quality of energy is . According to the , all energy inputs should be accounted with equal weight, whereas by the
diverse energy forms should be accounted by different values.
The conflict is resolved in one of these ways:
value difference between energy inputs is ignored,
a value ratio is arbitrarily assigned (e.g., a
is 2.6 times more valuable than a joule of heat or fuel input),
the analysis is supplemented by economic (monetary) cost analysis,
instead of energy can be the metric used for the life cycle analysis.
Life cycle assessment is a powerful tool for analyzing
aspects of quantifiable systems. Not every factor, however, can be reduced to a number and inserted into a model. Rigid system boundaries make accounting for changes in the system difficult. This is sometimes referred to as the
to . The accuracy and availability of data can also contribute to inaccuracy. For instance, data from generic processes may be based on , , or outdated results. Additionally, social implications of products are generally lacking in LCAs. Comparative life-cycle analysis is often used to determine a better process or product to use. However, because of aspects like differing system boundaries, different statistical information, different product uses, etc., these studies can easily be swayed in favor of one product or process over another in one study and the opposite in another study based on varying parameters and different available data. There are guidelines to help reduce such conflicts in results but the method still provides a lot of room for the researcher to decide what is important, how the product is typically manufactured, and how it is typically used.
An in-depth review of 13 LCA studies of wood and paper products found a lack of consistency in the methods and assumptions used to track carbon during the . A wide variety of methods and assumptions were used, leading to different and potentially contrary conclusions – particularly with regard to
in landfills and with
during forest growth and product use.
This process includes three steps. First, a proper method should be selected to combine adequate accuracy with acceptable cost burden in order to guide decision making. Actually, in LCA process, besides streamline LCA, Eco-screening and complete LCA are usually considered as well. However, the former one only could provide limited details and the latter one with more detailed information is more expensive. Second, single measure of stress should be selected. Typical LCA output includes , energy consumption, water consumption, emission of , toxic residues and so on. One of these outputs is used as the main factor to measure in streamline LCA. Energy consumption and CO2 emission are often regarded as “practical indicators”. Last, stress selected in step 2 is used as standard to assess phase of life separately and identify the most damaging phase. For instance, for a family car, energy consumption could be used as the single stress factor to assess each phase of life. The result shows that the most energy intensive phase for a family car is the usage stage.
Life Cycle Assessment of Engineered Material in Service plays a significant role in saving energy, conserving resources
and saving billions by preventing premature failure of critical engineered component in a machine or equipment. LCA data of surface engineered materials are used to improve life cycle of the engineered component. Life cycle improvement of industrial machineries and equipments including, manufacturing, power generation, transportations, etc. leads to improvement in energy efficiency, sustainability and negating global temperature rise. Estimated reduction in anthropogenic carbon emission is minimum 10% of the global emission.
Stone: life-cycle assessment and best practices
US Environmental Protection Agency. 17 October 2010. Web.
US Environmental Protection Agency. 6 August 2010. Web.
. sftool.gov 2014.
. Ecometrica. Retrieved on: 25 April 2013.
18 January 2012 at the ., United Nations Environment Programme, 2009
. BSI. Retrieved on: 25 April 2013.
. GHG Protocol. Retrieved on: 25 April 2013.
ISO 1): Environmental management – Life cycle assessment – Principles and framework, International Organisation for Standardisation (ISO), Geneve
ISO 1): Environmental management – Life cycle assessment – Requirements and guidelines, International Organisation for Standardisation (ISO), Geneve
Rebitzer, G. et al. (2004). Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International. 30(2004), 701-720.
Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweq, S., Koehler, A., Pennington, D. & Suh, S. (2009). Recent developments in Life Cycle Assessment. Journal of Environmental Management 91(1), 1-21.
Steinbach, V. and Wellmer, F. (May 2010). "Review: Consumption and Use of Non-Renewable Mineral and Energy Raw Materials from an Economic Geology Point of View." Sustainability. 2(5), pgs. . Retrieved from &&
Rich, Brian D. Future-Proof Building Materials: A Life Cycle Analysis. Intersections and Adjacencies. Proceedings of the 2015 Building Educators’ Society Conference, University of Utah, Salt Lake City, UT. Gines, Jacob, Carraher, Erin, and Galarze, Jose, editors. Pp. 123-130.
Curran, Mary Ann.
(PDF). Scientific Applications International Corporation. Archived from
(PDF) on 18 October .
Cooper, J.S.; Fava, J. (2006). "Life Cycle Assessment Practitioner Survey: Summary of Results". Journal of Industrial Ecology.
Malmqvist, T; Glaumann, M; Scarpellini, S; Zabalza, I; Aranda, A (April 2011). . Energy. 36 (4): . : 2012.
S. S B. R. Bakshi (2009). "Eco-LCA: A Tool for Quantifying the Role of Ecological Resources in LCA". International Symposium on Sustainable Systems and Technology: 1–6. :.  .
– www.thegreenstandard.org
Galli, F; Pirola, C; Previtali, D; Manenti, F; Bianchi, C (April 2017). . Journal of Cleaner Production. 171: 147–152. : 2017.
Scientific Applications International Corporation (May 2006).
(PDF). p. 88. Archived from
(PDF) on 23 November 2009.
. . 3 September .
Suzanne Choney (24 February 2009). . MSNBC 2013.
Franklin Associates, A Division of Eastern Research Group.
(PDF). The Plastics Division of the American Chemistry Council 2012.
"Cradle-to-cradle definition." Ecomii. 19 October 2010. Web. &&.
Jiménez-González, C.; Kim, S.; Overcash, M. Methodology for developing gate-to-gate Life cycle inventory information. The International Journal of Life Cycle Assessment 3–159.
Brinkman, N Wang, M Weber, T Darlington, Thomas (May 2005).
2011. See EXECUTIVE SUMMARY – ES.1 Background, pp1.
Brinkman, N Eberle, U Formanski, V Grebe, Uwe-D Matthe, Roland (15 April 2012). .
(PDF). California Energy Commission. 1 August .
. . Archived from
on 4 May .
Moro A; Lonza L. "Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles". Transportation Research Part D: Transport and Environment. :.
Moro A; Helmers E. "A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles". Int J Life Cycle Assess (. :.
Hendrickson, C. T., Lave, L. B., and Matthews, H. S. (2005). Environmental Life Cycle Assessment of Goods and Services: An Input–Output Approach, Resources for the Future Press  .
Rosen, M. A., & Dincer, I. (2001). Exergy as the confluence of energy, environment and sustainable development. Exergy, an International journal, 1(1), 3-13.
Wall, G., & Gong, M. (2001). On exergy and sustainable development—Part 1: Conditions and concepts. Exergy, An International Journal, 1(3), 128-145.
Wall, G. (1977). Exergy-a useful concept within resource accounting.
Wall, G. (2010). On exergy and sustainable development in environmental engineering. The Open Environmental Engineering Journal, 3, 21-32.
Dewulf, J.; Van Langenhove, H.; Muys, B.; Bruers, S.; Bakshi, B. R.; Grubb, G. F.; Sciubba, E. (2008).
(PDF). Environmental Science & Technology. 42 (7): . :.
Sciubba, E (2004).
(PDF). Journal of Industrial Ecology. 8 (4): 19–40. :.
Rocco, M. V., Colombo, E., & Sciubba, E. (2014). Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method. Applied Energy, 113, .
Dewulf, J., & Van Langenhove, H. (2003). Exergetic material input per unit of service (EMIPS) for the assessment of resource productivity of transport commodities. Resources, Conservation and Recycling, 38(2), 161-174.
David MacKay
24 February 2010 p. 41
McManus, M (2010). "Life cycle impacts of waste wood biomass heating systems: A case study of three UK based systems". Energy. 35 (10): . :.
Allen, S.R., G.P. Hammond, H. Harajli, C.I. Jones, M.C. McManus and A.B. Winnett (2008). "Integrated appraisal of micro-generators: methods and applications". 161 (2): 73–86. :.
Damgaard, A, et al. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Management 30 (–1250.
Liamsanguan, C., Gheewala, S.H., LCA: A decision support tool for environmental assessment of MSW management systems. Jour. of Environ. Mgmt. 87 (–138.
Hammond, Geoffrey P. (2004).
(PDF). International Journal of Energy Research. 28 (7): 613–639. :.
Pehnt, Martin (2006). "Dynamic life cycle assessment (LCA) of renewable energy technologies". Renewable Energy: an International Journal. 31 (1): 55–71. :.
J.M. Pearce,
2nd Climate Change Technology Conference Proceedings, p. 48, 2009
Joshua M. Pearce (2008). "Thermodynamic limitations to nuclear energy deployment as a greenhouse gas mitigation technology". International Journal of Nuclear Governance, Economy and Ecology. 2 (1): 113–130. :.
Jyotirmay M Narendra Kumar B Hermann-Joseph Wagner (2004). "Dynamic energy analysis to assess maximum growth rates in developing power generation capacity: case study of India". Energy Policy. 32 (2): 281–287. :.
R. K C. L J.M. Pearce (2010). "Towards Real Energy Economics: Energy Policy Driven by Life-Cycle Carbon Emission". Energy Policy. 38 (4): . :.
Cornelissen, Reinerus Louwrentius (1997). . Thesis, University of Twente, Netherlands.
Malin, Nadav,
Building Green, 2010.
Linda Gaines and Frank Stodolsky . Argonne National Laboratory. Transportation Technology R&D Center
. Ncasi.org. Retrieved on .
21 March 2012 at the .. (PDF). Retrieved on .
R.Chattopadhyay: Green Tribology, Green Surface Engineering and Global Warming,2014,ASM International,OH,USA
R.Chattopadhyay: Surface Wear, Analysis, Treatment, and Prevention,2001,ASM International, OH, USA.
R.Chattopadhyay: Advanced Thermally Assisted Surface Engineering Processes, 2004, Springer, NY, USA.
R. Chattopadhyay and Mandira Chatterjee: Global Warming: Origin, Significance, and Management, 2012, Global Vision Publishing, New Delhi, India.
This article needs attention from an expert on the subject. The specific problem is: This list needs to be de-spammed, and truncated to the three most important textbooks only.
When placing this tag, consider
with a . (September 2016)
Crawford, R.H. (2011) Life Cycle Assessment in the Built Environment, London: Taylor and Francis.
J. Guinée, ed:, Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards, Kluwer Academic Publishers, 2002.
Baumann, H. och Tillman, A-M. The hitchhiker's guide to LCA : an orientation in life cycle assessment methodology and application. 2004.  
Curran, Mary A. "Environmental Life-Cycle Assessment", McGraw-Hill Professional Publishing, 1996,  
Ciambrone, D. F. (1997). Environmental Life Cycle Analysis. Boca Raton, FL: CRC Press.  .
Horne,Ralph., et al. "LCA: Principles, Practice and Prospects". CSIRO Publishing,Victoria, Australia, 2009.,  
Vallero, Daniel A. and Brasier, Chris (2008), "Sustainable Design: The Science of Sustainability and Green Engineering", John Wiley and Sons, Inc., Hoboken, NJ,  . 350 pages.
Vigon, B. W. (1994). Life-Cycle Assessment: Inventory Guidelines and Principles. Boca Raton, FL: CRC Press.  .
Vogtl?nder,J.G., “A practical guide to LCA for students, designers, and business managers”, VSSD, 2010,  .
Wikimedia Commons has media related to .
This article's use of
may not follow Wikipedia's policies or guidelines. Please
by removing
external links, and converting useful links where appropriate into . (September 2016) ()
(archived 24 October 2007)
: Hidden categories:

我要回帖

更多关于 welcom to 的文章

 

随机推荐