不锈钢丝价格拉拔工艺有着怎样的特别之处

所在地:中国 山东
联系人:毕延永
商 铺:.cn
该公司其他供应信息404错误,没有找到您想要进入的页面
您访问的页面不存在!!!
您可以返回 &或者&
为您推荐热门产品导读:稀土元素应用于不锈钢,主要是改善工艺性能,1.1.8不锈钢组织取决于各元素作用的总和,可将不锈钢中的合金元素分为两大类,这两类元素共存于不锈钢中时,不锈钢的组织取决于各元素互相影响的结果,不锈钢组织就以奥氏体为主,不锈钢的组织可通过组织图进行预测,1.2不锈钢的组织、性能和用途,不锈钢的牌号很多,我国常用不锈钢牌号就有50多个,如把不同牌号的不锈钢加热到高温(900℃~1100℃),根据金相组
右时,有显著的沉淀硬化效果,但铝会降低钢抗硝酸腐蚀能力。
稀土元素应用于不锈钢,主要是改善工艺性能,保证热加工顺利进行。双相钢常用稀土改善热加工性能。
1.1.8 不锈钢组织取决于各元素作用的总和
根据各元素对组织成分影响,可将不锈钢中的合金元素分为两大类,一类是扩大奥氏体区,稳定奥氏体组织的元素,包括碳、镍、锰、氮和铜,以碳和氮的作用程度最大;另一类是缩小奥氏体区,形成铁素体组织的元素,包括铬、硅、钼、钛、铌、钽、钒和铝等。这两类元素共存于不锈钢中时,不锈钢的组织取决于各元素互相影响的结果。如稳定奥氏体元素起主要作用,不锈钢组织就以奥氏体为主,铁素体很少以至于没有。如果它们作用程度还不能使钢的奥氏体保持到室温,在冷却过程中奥氏体发生马氏体转变,钢的组织则为马氏体。如果形成铁素体元素起主要作用,钢的组织则以铁素体为主。
不锈钢的组织可通过组织图进行预测,如图1-5。其横坐标表示铬当量([Cr]),纵坐标表示镍当量([Ni])。
[Cr]=Cr%+Mo%+1.5(Si+Ti)%+0.5Nb%+3Al%+5V%
[Ni]=Ni%+30(C+N)%+0.5Mn%+0.33Cu%
1.2不锈钢的组织、性能和用途
不锈钢的牌号很多,我国常用不锈钢牌号就有50多个。如把不同牌号的不锈钢加热到高温(900℃~1100℃),然后在空气中冷却,得到的金相组织各不相同。根据金相组织类型可将不锈钢分为:⑴马氏体钢,包括马氏体一碳化物钢;⑵铁素体钢;⑶奥氏体钢;⑷奥氏体―铁素体双相钢;(5)沉淀硬化钢。各类钢的常用牌号、用途和特点如下。
1.2.1马氏体钢
马氏体钢是一种可硬化不锈钢,根据化学成分可分为铬不锈马氏体钢和铬镍不锈马氏体钢,常用牌号有1Cr13、2Cr13、3Cr13(Mo)、4Cr13、1Cr17Ni2、2Cr13Ni2 、Y1Cr13和9Cr18(Mo)。马氏体钢有良好的淬透性,可通过淬、回火改变其强度和韧性,常温下有良好的耐腐蚀和耐磨性能,耐高温性能优良,直到500℃强度也不降低,在高达700℃大气中仍能抗氧化。1Cr13、2Cr13和3Cr13(Mo)用于制作刀具、精密轴、滚动体、喷咀、弹簧、阀门和手术器材等。1Cr17Ni2用作具有较高强度的耐硝酸及有机酸腐蚀的零件、轴、活塞杆、螺栓等。Y1Cr13和2Cr13Ni2属于易切削不锈钢,用于制作表面光洁度高、又承受较大应力的耐蚀零件,如仪表轴、销、齿轮等。9Cr18(Mo)是不锈钢中硬度最高的一种钢,多用作要求高硬度及耐磨的零件,如切削工具、轴承,弹簧及医疗器械等。
马氏体不锈钢作结构件和刀具用需进行淬火―回火处理。其耐蚀性能在淬火状态最好,淬回火状态次之,退火状态下最差。
马氏体钢通过退火实现软化,因为具有自硬性,退火后的冷却速度至关重要。退火方式有完全退火、再结晶退火和消除应力退火3种。
马氏体钢属于易裂钢,热加工和热处理时的热应力,冷加工时的残余应力,都能导致钢的开裂。所以热加工时应严格控制升温、降温速度,热加工后及时退火。冷加工后用及时进行消除应力处理。
1.2.2铁素体钢
铁素体钢在常温下以铁素体组织为主,具有体心立方晶格结构,钢中含铬11―30%,一般不含镍,有时含有少量的Mo、Ti和Nb。铁素体钢的耐腐蚀性能优于马氏体钢,具有导热系数大、膨胀系数小、抗氧化性能好和抗应力腐蚀性能优异等特点。常用牌号有0Cr13、0Cr17(Mo)、0Cr28。0Cr13用做汽车排气处理装Z、锅炉燃烧室喷咀等。0Cr17(Mo)用作家用电器部件、食品用具、清洗球及建筑装饰材料等。0Cr28用于制作浓硝酸、磷酸和次氯酸钠等化工设备零件和管道等。
一般说来,铁素体不锈钢的工艺性能较差,脆性倾向比较大。铁素体钢的脆性与下列几个因素有关:
1.2.2.1高温脆性
间隙元素(C、N)含量中等以上的(C+N>400PPM)铁素体钢,加热到1000℃以上,快速冷却到室温,其韧性和塑性比较低。近期研究表明高温脆性和晶间腐蚀一样,是由富铬碳化物、氮化物在晶间和位错上析出引起的。高温脆性转变温度随钢中间隙元素含量和铬含量的增加,冷却速度加快,向高温区移动。含铬25%的钢,当碳氮总量从0.035%提高到0.045%时,脆性转变温度从室温以下提高到室温以上。伴随着脆化,钢的耐蚀性能也急剧下降。已经脆化了的钢,从新加热到750℃―850℃可以恢复其塑性和耐蚀性能。
1.2.2.2晶粒粗化
铁素体钢的晶粒极易粗化,加热时其晶粒长大速度和粗化程度远远大于奥氏体不锈钢。这种晶粒粗化是不可逆转的。在热加工和热处理过程中,如工艺控制不当,晶粒一旦长大,往往造成整批钢脆化报废。因此为防止晶粒粗化,铁素体不锈钢往往采用较低的始锻(轧)温度(1040℃―1120℃)和终锻(轧)温度(700℃―800℃)。冷加工中,采用750―850℃短时间保温,快速冷却的退火工艺,使其软化。
1.2.2.3σ相析出
铁素体钢在550―800℃下长期加热,会析出一种铁与铬的金属间化合物(σ相)其成分相近似于FeCr。σ相硬而脆,沿晶界呈网状分布。σ相的出现使钢的性质变脆,并且降低钢的耐蚀和抗氧化性能。
一般认为,含铬低于20%的钢不易产生σ相,随着铬含量的增加,产生σ相的倾向增大。向钢中添加形成铁素体元素,如硅、铌、钛。钼等,产生σ相倾向增大,添加铜、锰、镍等稳定奥氏体元素有相反的作用。
已形成σ相的钢,经过850℃加热,保温半个小时,即可使σ相溶解,恢复钢的韧性。
1.2.2.4 475℃脆性
高铬钢在370―540℃温度下长期加热后,会出现强度升高、韧性大幅度降低的现象。这种现象在475℃左右尤为强烈,因此称为475℃脆性。
475℃脆性在含铬13.7%以上的钢中就有可能出现,在含铬较高的马氏体―铁素体钢、18―8型奥氏体钢及沉淀硬化钢中亦曾发现,但远不及高铬铁素体钢明显。
铁素体钢的475℃脆性,随含铬量的增加,脆性转变温度提高,转变所需的加热时间缩短。Cr13钢的转变温度为400℃℃,Cr17为500℃。Cr17加热14天冲击值降低不大,Cr28短期加热就可能变脆。
近期研究表明:475℃脆性是铬原子在钢中不均匀的偏聚,引起点阵畸变和内应力增加造成的,已产生475℃脆性的钢,可通过600℃以上加热,然后快冷予以消除。
1.2.3奥氏体钢
奥氏体钢在常温下为奥氏体组织,具有面心立方晶格结构。奥氏体钢是以18―8型铬镍钢为基础发展起来的钢。常用牌号有1Cr18Ni9、1Cr18Ni9Ti、0Cr18Ni9Cu3、0Cr17Ni12Mo2、0Cr25Ni20。1Cr18Ni9因冷加工强化效应显著,主要用作不锈弹簧和制绳材料。1Cr18Ni9Ti具有良好的抗晶间腐蚀性能,0Cr18Ni9Cu3冷加工性能优良,磁性较弱,用于制造螺栓、筛网和编织钢丝,0Cr17Ni12No2(316)在海水和其它含氯离子和硫化氢介质中有很好的耐点腐蚀性能,用于制作化工、石油、食品用设备的零部件、销、轴、网、传送带、螺栓等。0Cr25Ni20(310)兼有较高的耐蚀和耐热性能,作为耐蚀钢,用于制作食品工业中与浓醋酸和柠檬酸
接触的部件,作为耐热钢用于制作各种连续炉和周期炉的传送带,炉辊,炉膛部件,马氟炉管,辐射管等。
奥氏体钢具有高的耐蚀性能, 良好的焊接性能,常温和低温下有很高的塑性和韧性,加工性能远优于其它类型不锈钢,无磁性或具有弱磁性。缺点是钢的热膨胀系数较大,同铁素体钢一样,不能通过热处理强化,并对晶间腐蚀性能比较敏感。实际生产中常用降低碳含量、添加易形成碳化物的元素和采用稳定化处理的方法来消除这种敏感性。
1.2.4奥氏体―铁素体双相钢
奥氏体―铁素体双相钢常用牌号有00Cr25Ni5Mo3Si2,这种钢耐应力腐蚀和点腐蚀性能好,可用于含氯离子环境中,主要用在化工、石油、造纸的工业热交换器和冷凝器上。
奥氏体―铁素体双相钢中的铁素体含量随化学成分和加热温度的不同而有较大的变化,与奥氏体钢相比,这类钢具有屈服强度较高,抗晶间腐蚀和应力腐蚀能力较强,焊接时产生热裂纹倾向小,铸造流动性好等优点。缺点是热加工性能稍差,易产生σ相脆性。
1.2.5沉淀硬化钢
沉淀硬化钢常用牌号有0Cr17Ni7Al和0Cr17Ni4Cu4Nb。沉淀硬化钢具有良好的耐蚀性能和较高的强度。0Cr17Ni7Al多用作飞机外壳、结构件、喷气发动机零件、弹簧、天线、紧固件、仪表零件等。0Cr17Ni4Cu4Nb用于有一定耐蚀要求的高强度容器、高强度螺栓和喷气发动机零件等。
奥氏体不锈钢加工性能好,但强度低,不能通过热处理强化。马氏体钢淬火―回火能获得高强度,但加工性能不太好。沉淀硬化不锈钢兼有两者的优点,退火(固溶)状态较软,容易加工成形,通过热处理可获得高强度;具有与奥氏体不锈钢相当的耐蚀性能。此外,这类钢通过适当的时效处理,会析出沉淀相,使强度进一步提高。
1.3 不锈钢的品种
不锈钢的品种很多,除产量最大的不锈钢板材外,还有丝、管、棒、带等品种,其中不锈钢丝是发展的比较快的一个品种。在工业发达的国家,有用不锈钢丝取代碳素钢丝的趋势,致使不锈钢丝的需求量迅速增长。不锈钢丝按用途可分为不锈耐热钢丝、不锈弹簧钢丝、不锈焊丝、不锈冷顶锻钢丝、不锈轴承钢丝、不锈易切削钢丝等。
不锈钢丝是一种生产难度比较大的特殊钢丝。这类钢丝的热处理、表面处理和拉拔工艺和一般钢丝不一样,下面分类介绍不锈钢丝生产技术。
2、不锈钢丝生产工艺技术
2.1不锈耐热钢丝
不锈耐热钢丝现行标准GB/T4240-93,为国际一般水平标准。该标准包括23个钢号:奥氏体钢14个,铁素体钢2个,马氏体钢7个。成品钢丝主要考核尺寸偏差、表面质量和力学性能3项。奥氏体钢有3种交货状态:冷拉、轻拉、软态。马氏体和铁素体钢除4Cr13、1Cr17Ni2和9Cr18以退火状态交货外均以轻拉状态交货。家用电器和微型电机用精密轴、筛网和编织用钢丝、生产细丝用原料,捆绑线等均可按此标准定货。
2.1.1 生产工艺流程
奥氏体不锈钢丝生产流程如下:
奥氏体―铁素体不锈钢丝,以及部分电热合金、高温合金、耐蚀合金和精密合金丝材,因组织、成分与奥氏体不锈钢丝有相似之处,可按此工艺流程生产。
马氏体、铁素体不锈钢丝生产流程如下:
2.1.2热处理
不锈钢丝冷加工过程中的热处理与其它制品热处理的目的和方法不完全相同。
2.1.2.1 固溶处理
奥氏体不锈钢丝通过固溶处理来软化,一般将钢丝加热到950~1150℃左右,保温一段时间,使碳化物和各种合金元素充分均匀地溶解于奥氏体中,然后快速淬水冷却,碳及其它合金元素来不及析出,获得纯奥氏体组织,称之为固溶处理。固溶处理的作用有3点。
⑴使钢丝组织和成分均匀一致,这对原料尤其重要,因为热轧线材各段的轧制温度和冷却速度不一样,造成组织结构不一致。在高温下原子活动加剧,σ相溶解,化学成分趋于均匀,快速冷却后就获得均匀的单相组织。
⑵消除加工硬化,以利于继续冷加工。通过固溶处理,歪扭的晶格恢复,伸长和破碎的晶粒重新结晶,内应力消除,钢丝抗拉强度下降,伸长率上升。
⑶恢复不锈钢固有的耐蚀性能。由于冷加工造成碳化物析出,晶格缺陷,使不锈钢耐蚀性能下降。固溶处理后钢丝耐蚀性能恢复到最佳状态。
对于钢丝而言,固溶处理的3个要素是温度、保温时间和冷却速度。
固溶温度主要根据化学成分确定。一般说来,合金元素种类多、含量高的牌号,固溶温度要相应提高。特别是锰、钼、镍、硅含量高的钢,只有提高固溶温度,使其充分溶解,才能达到软化效果。但稳定化钢,如1Cr18Ni9Ti,固溶温度高时稳定化元素的碳化物充分溶解于奥氏体中,在随后的冷却中会以Cr23C6的形态在晶界析出,造成晶间腐蚀。为使稳定化
元素的碳化物(TiC和NbC)不分解、不固溶,一般采用下限固溶温度。
保温时间应根据热处理炉型和装炉量确定。周期炉多采用热装炉,即炉温升到预定温度后装炉,保温后快速出炉淬水。从装炉到出炉热处理周期一般为0.5-2h。
冷却速度对不锈钢性能有很大影响。如前所述,在冷却过程中碳要从奥氏体中析出,550~800℃为σ相析出区,还有475℃脆性区,因此,固溶后的钢丝应采用快速冷却的方式防止碳化物析出,避开上述温度区,获得最佳热处理效果。直径φ3.0mm以上的钢丝一般用水冷,直径φ3.0mm以下可以用风冷。美国304(0Cr19Ni9)和316(0Cr17Ni12Mo2)钢现场冷却作业标准认为,超过3min钢仍为红色就说明冷却速度不够。一般说来,固溶处理后钢丝抗拉强度主要取决于固溶温度,温度升高,抗拉强度偏低。伸长率似乎更多取决于冷却速度,冷却加快,伸长率偏高。
近年来,新兴不锈钢丝生产企业几乎全部选用氨分解气体保护连续炉,自由放线、倒立式收线或线轴收线的方式进行钢丝热处理。选用氨分解气体(25%N2+75%H2的体积比)作为
保护气的原因是液氨资源丰富,储运方便,制气装备简单,制出的气体纯度比较高,稍作净化即可使用。因为不锈钢中铬含量高,保护气体中的氧和水份的含量必须降到相当低的水平才能实现光亮热处理。对于铬―镍不锈钢,保护气体露点为-45~-55℃就能得到光亮表面。对于含有稳定化元素Ti、Nb或Mn、Al含量较高的钢,因为这些元素与氧的亲和力比铬大,即使保护气体的露点低于-55℃,钢的表面也会变成淡灰色和亮灰色。以氢气保护连续炉热处理0Cr17Ni7Al为例,氢气露点和钢表面变色的关系如表2-1。不锈钢表面蓝色氧化皮很难酸洗去除,如还原性气氛露点达不到要求,还不如采微氧化性(含5%游离O2)气氛好。
氢气露点与0Cr17Ni7Al表面色泽关系
包含总结汇报、IT计算机、外语学习、旅游景点、文档下载、教学研究、人文社科、考试资料以及不锈钢系列知识-不锈钢丝生产的工艺技术及应用技巧等内容。本文共14页
相关内容搜索抱歉,没有找到相关的信息
热门搜索排行榜

我要回帖

更多关于 不锈钢线 拉拔 工艺 的文章

 

随机推荐