微纳金属3D打印技术应用:AFM探针?

【摘要】:为了能够提高拉曼散射光的探测灵敏度,需要我们使用拉曼散射衬底来提高拉曼散射峰的强度。而如何制备得到高增强因子的拉曼散射衬底,科学工作者做出了很多的努力,他们设计出了多种衬底结构,例如利用粗糙的纳米颗粒衬底,二聚物衬底以及团簇材料衬底。在对大部分衬底增强情况的分析中,电磁增强机制在表面增强拉曼散射信号增强中起到主导作用。而在电磁增强中所谓的热点又是来自于表面等离子体共振。虽然一维亚波长金属光栅结构只是一个简单的微纳结构,但是它却拥有着丰富的物理意义。除了局域表面等离子体共振,表面等离子体激元也能够在一维亚波长金属光栅中传播。表面等离子体激元和局域的等离子体激元能够在一维亚波长金属光栅中耦合。在本论文当中,我们研究了在一维亚波长银纳米光栅中的表面等离子体激元与局域表面等离子体激元的耦合作用。我们通过有限时域差分模拟方法模拟了该耦合作用在金属表面所产生的电场的大小。利用该种耦合结构对电场增强作用,制备得到了一种一维亚波长金属光栅结构表面增强拉曼衬底,显著提高了金属表面的拉曼信号强度。通过理论结合实验研究发现了针对于532nm的入射激光所匹配的最优化一维亚波长银纳米光栅的占空比为0.4。所计算出来的耦合作用下的增强因子能够达到106数量级。在实验中,我们通过聚焦离子束刻蚀的方法来制作一维亚波长银纳米光栅结构。然后,在结构表面形成一层4-ABT探针分子与金属的薄膜。在共聚焦拉曼测试系统中对表面增强拉曼信号进行表征测量。通过对实验数据的分析计算可以得到实验测得的增强拉曼增强因子为104数量级。本论文取得的主要进展有:1、基于表面等离子体激元的耦合效应及其电场增强作用,提出设计并制备得到了一维亚波长银纳米光栅耦合结构。实验中所制备得到的一维亚波长银纳米光栅结构由于“热点”效应,使得电场局域在棱角等尖锐的地方,从而使得这些地方的电场得到了极大的增强,从而得到更高的增强因子。2、在文章中,我们对电场理论模拟结果和实验增强测量结果的不同进行了讨论,得到的结论是因为在溅射镀膜以及聚焦离子束加工刻蚀的时候产生的误差所导致的。我们通过使用场发射扫描电子显微镜(SEM)和原子力显微镜(AFM)对样品进行了表征,研究了不同光栅占空比对耦合结构电场增强作用的不同,研究了光栅高度值的分布差异所导致的电场强度分布。3、实验研究表面,实验中所测得的表面增强拉曼增强因子与理论计算吻合较好。结果表明,耦合效应可以产生更大表面增强拉曼因子。通过优化金属材料的性能以及微纳加工制造技术,即使使用一个非常简单的一维金属光栅,也可以很显著的提高表面增强拉曼峰信号。


本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。

在光线下形成聚合物或长链分子的树脂或其他材料,对于从建筑模型到功能性人体器官部件的3D打印而言是十分有吸引力的。但是,在单个体素的固化过程中,材料的机械和流动特性会发生怎样变化,这一点很神秘。体素是体积的3D单位,相当于照片中的像素。

图为聚合树脂单个体素的3D地形图像,被液体树脂包围。(NIST的研究人员使用样品耦合共振光流变学(SCRPR)技术来测量3D打印和固化过程中材料性质在小尺度上实时变化的方式和位置。)图片来源:NIST现在,美国国家标准与技术研究院(NIST)的研究人员已经展示了一种新型的基于光的原子力显微(AFM)技术——样品耦合共振光学流变学(SCRPR),它可以在材料固化过程中以最小的最小尺度测量材料性质在实际中的变化方式和位置。NIST材料研究工程师Jason Killgore说:“我们对工业方法产生了浓厚的兴趣,而这只是一些会议讨论的结果。”他和他的同事现在已经在“Small”杂志上发表了这项技术。三维印刷或增材制造受到称赞,可以十分灵活、高效地生产复杂零件,但其也有缺点,就是会在材料特性方面引入微观变化。由于软件将零件渲染为薄层,在打印前三维重建它们,因此材料的整体属性不再与打印零件的属性相匹配。相反,制造零件的性能取决于打印条件。NIST的新方法可以测量材料如何随亚微米空间分辨率和亚毫秒时间分辨率发展的——比批量测量技术小数千倍且更快。研究人员可以使用SCRPR来测量整个固化过程中的变化,收集关键数据,以优化从生物凝胶到硬质树脂的材料加工。这种新方法将AFM与立体光刻技术相结合,利用光线对光反应材料进行图案化,从水凝胶到增强丙烯酸树脂。由于光强度的变化或反应性分子的扩散,印刷的体素可能变得不均匀。AFM可以感知表面的快速微小变化。在NIST SCRPR方法中,AFM探针持续与样品接触。研究人员采用商业AFM,使用紫外激光在AFM探针与样品接触的位置或附近开始形成聚合物(“聚合”)。该方法在有限时间跨度内,在空间中的某一个位置处测量两个值。具体而言,它测量AFM探针的共振频率(最大振动的频率)和品质因数(能量耗散的指标),跟踪整个聚合过程中这些值的变化。然后可以使用数学模型分析这些数据,以确定材料属性,例如刚度和阻尼。用两种材料证明了该方法。一种是由橡胶光转化为玻璃的聚合物薄膜。研究人员发现,固化过程和性能取决于曝光功率和时间,并且在空间上很复杂,这证实了快速,高分辨率测量的必要性。第二种材料是商业3-D印刷树脂,在12毫秒内从液体变成固体。共振频率的升高似乎表明固化树脂的聚合和弹性增加。因此,研究人员使用AFM制作了单个聚合体素的地形图像。让研究人员感到惊讶的是,对NIST技术的兴趣远远超出了最初的3D打印应用。NIST的研究人员表示,涂料,光学和增材制造领域的公司已经开始感兴趣,有些正在寻求正式的合作。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

我要回帖

更多关于 尿道金属探针 的文章

 

随机推荐