谁知道Midmark 淳萃中国总代理理是哪家?

您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
别嘌呤醇对大鼠氧显像剂18f-fmiso摄取的影响.pdf 37页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
别嘌呤醇对大鼠氧显像剂18f-fmiso摄取的影响
你可能关注的文档:
··········
··········
帽医科大学研姓学位论文独创性声旷㈣必
本人申明所呈交的学位论文是我本人在导师指导下进行的研究工作及
取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论
文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得我校或
其他教育机构的学位或证书而使用过的材料,与我一同工作的同志对本研
究所做的任何贡献均己在论文中作了明确的说明并表示谢意。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
论文作者斟:年
中国医科大学研究生学位论文版权使用授权书
本人完全了解中国医科大学有关保护知识产权的规定,即:研究生在
攻读学位期间论文工作的知识产权单位属中国医科大学。本人保证毕业离
校后,发表论文或使用论文工作成果时署名单位为中国医科大学,且导师
为通讯作者,通讯作者单位亦署名为中国医科大学。学校有权保留并向国
家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。学
校可以公布学位论文的全部或部分内容(保密内容除外),以采用影印、缩
印或其他手段保存论文。
论文作者签名:
指导教师签名.i
中文论著摘要…………………………………….1
英文论著摘要…………………………………….2
二、英文缩略语………………………………………4
前言……………………………………………5一刚舌……………………………………………
材料、试剂和仪器…………………………………6
方法与步骤………………………………………7
结果…………………………………………..12
讨论…………………………………………..17
结论…………………………………………..20
四、创新性自我评价………………………………….21
五、参考文献……………………………………….22
综述…………………………………………..24
在学期间科研成绩………………………………..35
致谢…………………………………………..36
个人简介……………………………………….37
·中文论著摘要·
I SO摄取的影响
别嘌呤醇对大鼠乏氧显像剂18F-FM
目的:研究别嘌呤醇对脑缺血大鼠在乏氧显像时显像剂18F-FMISO摄取的影
响。方法:12只MCAO模型大鼠分为2组,其中A(缺血组)组7只,于缺血后
1h经尾静脉注射显像剂18F—FMISO,动态采集2h后,一只处死进行TTC染色,
注射别嘌呤醇溶液1h后,经尾静脉注射显像剂18F.FMISO,动态采集2
一只处死进行TTC染色,其他4只用于黄嘌呤氧化酶(XO)的活性检测。结果:
脑组织,P<O.05。(2)缺血组病灶侧X0的活力为228.354-10.28U/gprot(n=6),
镜像侧X0活力为199.47±3.31
214.074-1.77
U/gprot(n=4),镜像侧228.164-13.01
(尸<0.001)。结论:
病灶/镜像XO活力比分别为1.15±0.045及0.95±0.048,
氧化酶的活力,可以影响18F-FMISO的摄取,这种影响作用在给药2h以后尤为明
乏氧显像:18F—FMISO;别嘌呤醇:黄嘌呤氧化酶。
·英文论著摘要·
allopurinolagainsthypoxiaimaging
18F—FMISO
正在加载中,请稍后...9-21 2-SAT,贪心,二分
Now or later
As you must have experienced, instead of landing immediately, an aircraft sometimes waits in a holding
loop close to the runway. This holding mechanism is required by air traffic controllers to space apart
aircraft as much as possible on the runway (while keeping delays low). It is formally defined as a
“holding pattern” and is a predetermined maneuver designed to keep an aircraft within a specified
airspace (see Figure 1 for an example).
Figure 1: A simple Holding Pattern as described in a pilot text book.
Jim Tarjan, an air-traffic controller, has asked his brother Robert to help him to improve the
behavior of the airport.
The TRACON area
The Terminal Radar Approach CONtrol (TRACON) controls aircraft approaching and departing
when they are between 5 and 50 miles of the airport. In this final scheduling process, air traffic
controllers make some aircraft wait before landing. Unfortunately this “waiting” process is complex
as aircraft follow predetermined routes and their speed cannot be changed. To reach some degree of
flexibility in the process, the basic delaying procedure is to make aircraft follow a holding pattern that
has been designed for the TRACON area. Such patterns generate a constant prescribed delay for an
aircraft (see Figure 1 for an example). Several holding patterns may exist in the same TRACON.
In the following, we assume that there is a single runway and that when an aircraft enters the
TRACON area, it is assigned an early landing time, a late landing time and a possible holding pattern.
The early landing time corresponds to the situation where the aircraft does not wait and lands as
soon as possible. The late landing time corresponds to the situation where the aircraft waits in the
prescribed holding pattern and then lands at that time. We assume that an aircraft enters at most
one holding pattern. Hence, the early and late landing times are the only two possible times for the
The security gap is the minimal elapsed time between consecutive landings. The objective is to
maximize the security gap. Robert believes that you can help.
Assume there are 10 aircraft in the TRACON area. Table 1 provides the corresponding early and
late landing times (columns “Early” and “Late”).
Aircraft Early Late Solution
A1 44 156 Early
A2 153 182 Early
A3 48 109 Late
A4 160 201 Late
A5 55 186 Late
A6 54 207 Early
A7 55 165 Late
A8 17 58 Early
A9 132 160 Early
A10 87 197 Early
Table 1: A 10 aircraft instance of the problem.
The maximal security gap is 10 and the corresponding solution is reported in Table 1 (column
“Solution”). In this solution, the aircraft land in the following order: A8, A1, A6, A10, A3, A9, A2, A7,
A5, A4. The security gap is realized by aircraft A1 and A6.
The input file, that contains all the relevant data, contains several test cases
Each test case is described in the following way. The first line contains the number n of aircraft
(2 ≤ n ≤ 2000). This line is followed by n lines. Each of these lines contains two integers, which
represent the early landing time and the late landing time of an aircraft. Note that all times t are such
that 0 ≤ t ≤ 107
For each input case, your program has to write a line that conttains the maximal security gap between
consecutive landings.
Note: The input file corresponds to Table 1.
Robert’s Hints
Optimization vs. Decision Robert advises you to work on the decision variant of the problem. It
can then be stated as follows: Given an integer p, and an instance of the optimization problem,
the question is to decide if there is a solution with security gap p or not. Note that, if you
know how to solve the decision variant of an optimization problem, you can build a binary search
algorithm to find the optimal solution.
On decision Robert believes that the decision variant of the problem can be modeled as a very particular
boolean satisfaction problem. Robert suggests to associate a boolean variable per aircraft
stating whether the aircraft is early (variable takes value “true”) or late (value “false”). It
should then be easy to see that for some aircraft to land at some time has consequences for the
landing times of other aircraft. For instance in Table 1 and with a delay of 10, if aircraft A1
lands early, then aircraft A3 has to land late. And of course, if aircraft A3 lands early, then
aircraft A1 has to land late. That is, aircraft A1 and A3 cannot both land early and formula
(A1 => ?A3) ∧ (A3 => ?A1) must hold.
And now comes Robert’s big insight: our problem has a solution, if and only if we have no contradiction.
A contradiction being something like Ai
Sample Input
Sample Output
有n架飞机需要着陆,每架飞机都可以选择“早着陆”或“晚着陆”两种方式,第i架飞机早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆。你的任务是为这些飞机安排着陆方式,使得整个着陆计划尽量安全。换言之,如果把所有飞机的实际着陆时间从小到大排序,相邻两个着陆时间间隔的最小值应尽量大。
先用的二分+贪心的做法,理所当然的T了
然后乖乖用2-sat+二分,
在加边那一块需要加深理解, 这个复杂度是O(n*n*logT), 注意熟练一下计算方法
2-sat+二分
自己AC, 请与刘汝佳的代码比较一下,,自己写的有多丑。。
<code class="language-#include
hljs cpp">using namespace std;
int f[2010][2];
bool mark[4020];
vector&int& g[4020],
void add_edge(int i, int x, int j, int y){
g[i^1].push_back(j);
g[j^1].push_back(i);
void init(int mid){
memset(mark, 0, sizeof(mark)); path.clear();
for(int i = 0; i & 2*n; i++) g[i].clear();
for(int i = 0; i & i++) for(int a = 0; a & 2; a++)
for(int j = i+1; j & j++) for(int b = 0; b & 2; b++)
if(abs(f[i][a] - f[j][b]) & mid) add_edge(i, a^1, j, b^1);
bool dfs(int pos){
if(mark[pos^1]) return false;
if(mark[pos]) return true;
mark[pos] = true;
path.push_back(pos);
for(int i = 0; i & g[pos].size(); i++){
if(!dfs(g[pos][i])) return false;
return true;
bool check(int mid){
init(mid);
for(int i = 0; i & 2*n; i+=2){
if(!mark[i] && !mark[i+1]){
path.clear();
if(!dfs(i)){
for(int j = 0; j & path.size(); j++)
mark[path[j]] = false;
path.clear();
if(!dfs(i+1)){return false;}
return true;
int main()
while(~scanf("%d", &n)){
for(int i = 0; i & i++)
scanf("%d%d", &f[i][0], &f[i][1]);
int l = 0, r = 1e7,
while(r & l){
mid = l + (r - l + 1)/2;
if(check(mid)) l =
r = mid - 1;
printf("%d\n", l);
#include &bits/stdc++.h&
using namespace std;
const int maxn = 2010;
int gra[maxn][2];
struct Two_SAT{
vector&int& G[maxn*2];
bool mark[maxn*2];
int s[maxn*2],
bool dfs(int x){
if(mark[x^1]) return false;
if(mark[x]) return true;
mark[x] = true;
for(int i = 0; i & G[x].size(); i++)
if(!dfs(G[x][i])) return false;
return true;
void init(int n){
for(int i = 0; i & n*2; i++) G[i].clear();
memset(mark, 0, sizeof(mark));
void add_clause(int x, int xval, int y, int yval){
G[x^1].push_back(y);
G[y^1].push_back(x);
bool solve(){
for(int i = 0; i & n*2; i+=2){
if(!mark[i] && !mark[i+1]){
if(!dfs(i)){
while(c&0) mark[s[--c]] = false;
if(!dfs(i+1)) return false;
return true;
bool test(int mid){
cas.init(n);
for(int i = 0; i & i++) for(int s = 0; s & 2; s++)
for(int j = i+1; j & j++) for(int t = 0; t & 2; t++)
if(abs(gra[i][s] - gra[j][t]) & mid) cas.add_clause(i, s^1, j, t^1);
return cas.solve();
int main()
while(~scanf("%d", &n)){
int l = 0, r = 0;
for(int i = 0; i & i++) for(int a = 0; a & 2; a++){
scanf("%d%d", &gra[i][a]);
r = max(gra[i][a]);
while(l & r){
mid = l + (r-l+1)/2;
if(test(mid)) l =
else r = mid-1;
printf("%d\n", l);
struct plane{
int time, pos,
}pla[4010];
int mark[2010];
bool operator & (const plane& a, const plane& b){
return a.time & b.time;
void add_plane(int pos, int time, int id){
pla[pos].time = time, pla[pos].pos = pos % 2; //pos == 0 为Left,early
pla[pos].id =
bool dfs(int s, int mid){
mark[pla[s].id] = 1;
int cnt = 1, pre = pla[s++].time;
while(s & 2*n && cnt & n){
if(pla[s].time-pre & mid && pla[s].pos && !mark[pla[s].id]) return
if(pla[s].time-pre &=
if(!mark[pla[s].id]) {
mark[pla[s].id] = 1;
pre = pla[s].time;
if(cnt!=n)
bool check(int mid){
for(int i = 0; i &= i++){
memset(mark, 0, sizeof(mark));
if(dfs(i, mid)) return
int main()
//freopen("1.txt", "r", stdin);
while(~scanf("%d", &n)){
for(int i = 0; i & i++){
scanf("%d%d", &e, &l);
add_plane(i*2, e, i);
add_plane(i*2+1, l, i);
sort(pla, pla+2*n);
for(flag = 0; flag & 2*n; flag++) if(pla[flag].pos) break;
int l = 0, r = 1e7;
while(r != l+1){
mid = (r+l)/2;
if(check(mid))
r = mid-1;
if(check(l)) printf("%d\n", l);
else printf("%d\n", r);
没有更多推荐了,您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
大鼠gsk--β过表达基因慢病毒载体的构建与鉴定及其对肝卵圆细胞生长的抑制作用.pdf 52页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
&#xe600;下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
大鼠gsk--β过表达基因慢病毒载体的构建与鉴定及其对肝卵圆细胞生长的抑制作用
你可能关注的文档:
··········
··········
温州医学院硕士学位论文
大鼠Gsk-3B过表达基因慢病毒载体的构建与鉴定及其对
肝卵圆细胞生长的抑制作用
1.构建携带大鼠Gsk-3B过表达基因与绿色荧光蛋白(GFP)融合基因慢病毒表
2.使携带目的基因Gsk一3B过表达的慢病毒载体在肝卵圆细胞(WB—F344)中稳
定表达,并用WesternBlot(蛋白印记)技术鉴定该载体构建成功;
3.进一步研究Gsk一3D过表达对大鼠肝卵圆细胞增殖的影响及其可能的调控机
1.查询PubMed数据库(www.pubmed.com),找到大鼠Gsk-3B序列,根据Gsk-3
基因信息(Gsk一3B,NM一032080,Rat)设计引物。设计引物Gsk3I-F和
B—AgeI—R钓取Gsk一3B目的基因,对钓取的Gsk-313目的基因进行PCR
扩增,获得PCR产物。
2.限制性内切酶AgeI酶切慢病毒载体pGC—FU,使载体酶切线性化。将纯化后
的Gsk-3B目的基因与酶切线性化的慢病毒载体进行定向交换,构建Gsk一3
B与绿色荧光蛋白(GFP)融合基因的重组表达载体PGC—FU—Gsk3B,将交换产
物转染大肠杆菌感受态细胞,并PCR鉴定,扩增后行DNA测序鉴定。
3.脂质体法将将重组真核表达载体PGC-FU-Gsk3B与慢病毒质粒骨架pHelper
1.0载体和pHelper2.0载体三质粒共感染293T工具细胞,荧光显微镜观察
细胞荧光表达情况,包装产生慢病毒质粒,收集上清,浓缩,取浓缩纯化的
病毒上清液再转染293T细胞,提取病毒颗粒,并利用Real—Time—PCR方法测定
该病毒滴度,获得含目的基因Gsk-3B过表达的慢病毒载体。
4.将肝卵圆细胞(WB—F344细胞)分为空白对照组、空病毒载体对照组及Gsk一3
B过表达慢病毒感染组,转染72h后荧光显微镜观察各组细胞荧光表达情况及
细胞形态变化。
5.病毒共培养WB—F344细胞72tJ',时,收集空病毒载体对照组及Gsk一3D过表达慢
病毒感染组总蛋白,WesternBIot检测Gsk一3B的表达,进一步鉴定Gsk-3
过表达慢病毒载体PGC—FU—Gsk3B构建成功。
6.采用细胞活性计数方法(Ce]1CountingKit-8,CCK一8法)检测空白组、空病
毒载体组及PGC-FU—Gsk3B慢病毒感染组72h对WB—F344细胞体外培养的影响。
温州医学院硕士学位论文
7.收集72h后各组细胞总蛋白,Western
CyclinD1蛋白的表达。
1.PCR钓取目的基因。PCR扩增电泳证实获得长度为1306bp的核酸片段,凝胶
电泳显示单一条带,与GeneBank检索的Gsk一3
B序列大小完全一致。
2.pGC—FU真核表达载体酶切线性化,PCR电泳证实载体酶切成功,将目的基因
与酶切线性化的载体进行定向交换成功构建了PGC—FU—Gsk3B重组表达质粒,经
过连接转化,抗生素筛选得到阳性的细菌克隆,扩增细菌克隆后提取表达质粒,
采用引物DNA测序测得构建的质粒正确。
3.将重组真核表达载体PGC—FU—Gsk3
B与慢病毒质粒骨架pHelper1.0载体和
pHelper2.0载体三质粒共感染293T,细胞培养72小时荧光显微镜下见病毒感
染组出现大量绿色荧光,提取病毒颗粒,测得病毒滴度为2E+8删。
4.肝卵圆细胞(WB—F344细胞)分为空白组、空病毒载体组及Gsk-3B慢病毒感
染组,转染72h后荧光显微镜下见病毒感染组出现大量绿色荧光,同
正在加载中,请稍后...

我要回帖

更多关于 nsk中国总代理 的文章

 

随机推荐