乙醛酸车间需要消防冷却么

&&姓&&名:*&
&&电&&话:*&
&&单&&位:*&
&&邮&&箱:&&
留言内容:*&
验证码:*&
仪器仪表交易网 北京搜宝网络技术有限公司 版权所有 2003 - , All Rights Reserved
[-tj_fromurl-]
[-tj_accessurl-]
[-tj_clientip-]
[-tj_useragent-]
[-tj_psid-]
[-tj_userid-]
[-tj_dbno-]
[-tj_pname-]三聚乙醛 _百度百科
特色百科用户权威合作手机百科
收藏 查看&三聚乙醛
副醛一般指三聚乙醛 本词条缺少信息栏,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
三聚乙醛,有机化合物,别名仲(乙)醛、三聚醋醛、副醛。无色油状液体,具有令人愉快的辛辣气味。三聚乙醛易分解成乙醛,可作为乙醛的稳定形态,便于乙醛的储存和运输。用作溶剂,,橡胶促进剂和抗氧剂。用于农药、香科、医药、涂料工业领域。
中文名称 三聚乙醛
英文名称 paraldehyde
英文别名:2,4,6-trimethyl-1,3,5-T[1] 2,4,6-trimethyl-s- P PARAL; acetaldehyde, PCHO; s-trim trimethyl 1,3,5- M 2H-pyran-6-carbaldehyde
别 名 :仲(乙)醛;三聚醋醛;
分子式 C6H12O3
分子量 132.16
CAS号 123-63-7
EINECS号 204-639-8
FEMA:4010外观:无色油状液体。
香气:具有令人愉快的辛辣气味。1%的溶液具有甜的气息和样香气,带有吡嗪样的后韵,并有霉腐气和稍有粉香气息以及果酱香调。
密度:(水=1)0.99;相对密度(空气=1)4.55
熔点?:12.6℃
沸点:124.0℃
:1.33kPa/24℃
:能与乙醇、氯仿、乙醚和油类混溶,溶于8份25℃水或17份沸水。
与稀盐酸共热或加入几滴硫酸即分解成乙醛。乙醛在存放过程中能发生聚合生成三聚乙醛;等。工业生产则以等为催化剂使乙醛发生聚合。一、健康危害
侵入途径:吸入、食入、经皮吸收。
健康危害:吸入、口服或经皮肤吸收对身体有害,对粘膜和呼吸道有刺激作用,中毒表现有头痛、困倦、支气管炎。
二、毒理学资料及环境行为
:LD501530mg/kg(大鼠经口);14000mg/kg(兔经皮)
刺激性:家兔经眼:5mg,重度刺激。家兔经皮开放性刺激试验:500mg ,轻度刺激。
致突变性:细胞遗传学分析:制酒酵母菌50mmol/管。
:小鼠经皮最小中毒剂量12g/kg/周,肿瘤阳性。
危险特性:易燃,遇明火有引起燃烧的危险。受高热分解放出有毒的气体。与氧化剂接触会猛烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。
燃烧(分解)产物:、二氧化碳。
前苏联 车间空气中有害物质的最高容许浓度 5mg/m³一、泄漏应急处理
迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂士或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。喷雾状水冷却和稀释蒸气、保护现场人员、把泄漏物稀释成不燃物。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
二、防护措施
呼吸系统防护:空气中浓度超标时,应该佩戴自吸过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,佩戴空气呼吸器。
眼睛防护:戴安全防护眼镜。
身体防护:穿防静电工作服。
手防护:戴防苯耐油手套。
其它:工作现场严禁吸烟、进食和饮水。工作毕,沐浴更衣。保持良好的卫生习惯。
三、急救措施
皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。
眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:饮足量温水,催吐,就医。
灭火方法:灭火剂:抗溶性泡沫、、、砂土。
新手上路我有疑问投诉建议参考资料 查看<div class="login fr js-login" data-login='' data-logout='欢迎登录迈点我要去->
会员中心 ?
本站共有138213份资料,今日更新0份
& 石油化工企业设计防火规范(51P)
石油化工企业设计防火规范(51...
总则…………………………………………………………………………………………1
下载本文档需要登录,并付出相应迈粒。
文件大小:
所需迈粒: 5
迈点用户认为合适的标签(共 0 个)
以下多媒体课程也可以学习哦
简短评论(全部0)
750 4 人评乙酸 _百度百科
特色百科用户权威合作手机百科
收藏 查看&乙酸[yǐ suān]
乙酸,也叫醋酸(36%--38%)、冰醋酸(98%),化学式CH3COOH,是一种,为内酸味及刺激性气味的来源。纯的无水乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.6℃(62),凝固后为无色。尽管根据乙酸在水溶液中的解离能力它是一种弱酸,但是乙酸是具有的,其蒸汽对眼和有刺激性作用。英文名AceticAcid别&&&&称醋酸化学式CH3COOH分子量60.05CAS登录号64-19-7沸&&&&点117.9℃水溶性能溶于水密&&&&度1.050外&&&&观无色液体闪&&&&点39℃
醋几乎贯穿了整个人类文明史。乙酸发酵细菌()能在世界的每个角落发现,每个民族在酿酒的时候,不可避免的会发现醋——它是这些酒精饮料暴露于空气后的自然产物。如中国就有的儿子黑塔因酿酒时间过长得到醋的说法。
古罗马的人们将发酸的酒放在铅制容器中煮沸,能得到一种高甜度的糖浆,叫做“sapa”。“sapa”富含一种有甜味的铅糖,即,这导致了罗马贵族间的铅中毒。公元8世纪时,波斯炼金术士贾比尔,用浓缩了醋中的乙酸。
文艺复兴时期,人们通过金属醋酸盐的干馏制备冰醋酸。16世纪德国炼金术士安德烈亚斯·利巴菲乌斯就描述了这种方法,并且拿由这种方法产生的冰醋酸来和由醋中提取的酸相比较。仅仅是因为水的存在,导致了醋酸的性质发生如此大的改变,以至于在几个世纪里,化学家们都认为这是两个截然不同的物质。法国化学家(Pierre Adet)证明了它们两个是相同的。[1]
1847年,德国科学家阿道夫·威廉·赫尔曼·科尔贝第一次通过无机原料合成了乙酸。这个反应的历程首先是二硫化碳经过氯化转化为,接着是的高温分解后水解,并氯化,从而产生,最后一步通过电解还原产生乙酸。
1910年时,大部分的冰醋酸提取自干馏木材得到的。首先是将通过处理,然后将形成的乙酸钙用硫酸酸化,得到其中的乙酸。在这个时期,德国生产了约10000吨的冰醋酸,其中30%被用来制造靛青染料。英文名称:AceticAcid
其他名:冰醋酸,醋酸
适应症:本品不同浓度用以治疗各种皮肤浅部真菌感染,灌洗创面及鸡眼、疣的治疗。[2]
药品分类:消毒防腐剂-冰醋酸
分子量:60.05
分子式:CH3COOH
沸点(℃):117.9
凝固点(℃):16.6
相对密度(水为1):1.050
粘度(mPa.s):1.22(20℃)
20℃时蒸气压(KPa):1.5
外观及气味:无色液体,有刺鼻的醋酸味。
溶解性:能溶于水、乙醇、乙醚、四氯化碳及甘油等有机溶剂。
相容性材料:稀释后对金属有强烈腐蚀性,316#和318#不锈钢及铝可作良好的结构材料。
国家产品标准号:GB/T 676-2007
下为中华人民共和国关于工业乙酸的国家标准:
指标名称指标 优等品一等品合格品,Hazen 单位(-色号)≤
乙酸含量,% ≥
含量,% ≤
含量,% ≤
蒸发残渣,% ≤
含量(以Fe 计),% ≤
还原物质, min ≥
中,例如乙酸的羧基能够部分电离变为氢()而释放出来,导致羧酸的酸性。乙酸在水溶液中是一元弱酸,为4.8,pKa=4.75(25℃),浓度为1mol/L的醋酸溶液(类似于家用醋的浓度)的pH为2.4,也就是说仅有0.4%的醋酸是解离的。
乙酸的酸性促使它还可以与、、等物质反应。
2C2H4O2 + Na2CO3 = 2NaC2H3O2 + CO2↑+ H2O
2CH3COOH + Cu(OH)2 = (CH3COO)2Cu + 2H2O
CH3COOH + C6H5ONa = C6H5OH ()+ CH3COONa乙酸的晶体结构显示 ,分子间通过氢键结合为二聚体(亦称二缔结物),二聚体也存在于120℃的蒸汽状态。二聚体有较高的稳定性,已经通过冰点降低测定分子量法以及X光衍射证明了分子量较小的羧酸如甲酸、乙酸在固态及液态,甚至气态以二聚体形式存在。当乙酸与水溶和的时候,二聚体间的氢键会很快的断裂。其它的羧酸也有类似的二聚现象。[3]液态乙酸是一个亲水(极性)质子化溶剂,与乙醇和水类似。因为介电常数为6.2,它不仅能溶解极性化合物,比如无机盐和糖,也能够溶解非极性化合物,比如油类或一些元素的分子,比如硫和碘。它也能与许多极性或非极性溶剂混合,比如水,氯仿,己烷。乙酸的溶解性和可混合性使其成为了化工中广泛运用的化学品。对于许多金属,乙酸是有腐蚀性的,例如铁、镁和锌,反应生成氢气和金属乙酸盐。虽然铝在空气中表面会形成氧化铝保护层,但是在醋酸的作用下,氧化膜会被破坏,内部的铝就可以直接和酸作用了。金属的乙酸盐也可以用乙酸和相应的碱性物质反应,比如最著名的例子:小苏打与醋的反应。除了醋酸铬(II),几乎所有的醋酸盐能溶于水。[2]
Mg(S)+ 2 CH3COOH(aq)→ (CH3COO)2Mg(aq) +H2(g)
NaHCO3(s)+ CH3COOH(aq) →CH3COONa(aq) +CO2(g) +H2O(l)
乙酸能发生普通羧酸的典型化学反应,特别注意的是,可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。
同样,乙酸也可以成酯或氨基化合物。如乙酸可以与乙醇在浓硫酸存在并加热的条件下生成乙酸乙酯(本反应为可逆反应,反应类型属于取代反应中的酯化反应)。
CH3COOH + CH3CH2OH&==& CH3COOCH2CH3 + H2O
440℃的高温下,乙酸分解生成甲烷和二氧化碳或乙烯酮和水。
乙酸的典型化学反应:
乙酸与碳酸钠:2CH3COOH+Na2CO3==2CH3COONa+CO2↑+H2O
乙酸与碳酸钙:2CH3COOH+CaCO3==(CH3COO)2Ca+CO2↑+H2O
乙酸与碳酸氢钠:NaHCO3+CH3COOH==CH3COONa+H2O+CO2↑
乙酸与碱反应:CH3COOH+OH-==CH3COO-+H2O
乙酸与弱酸盐反应:2CH3COOH+CO32-==2CH3COO-+H2O+CO2↑
乙酸与活泼金属单质反应:Fe+2CH3COOH==(CH3COO)2Fe+H2↑
Zn+2CH3COOH==(CH3COO)2Zn +H2↑
2Na+2CH3COOH==2CH3COONa+H2↑
乙酸与氧化锌反应:2CH3COOH+ZnO==(CH3COO)2Zn+H2O
乙酸与乙醇反应:CH3COOH+C2H5OH=△=CH3COOC2H5+H2O(注:条件是加热,催化,可逆反应)[4]乙酸中的乙酰基,是生物化学中所有生命的基础。当它与辅酶A结合后,就成为了碳水化合物和脂肪新陈代谢的中心。然而,乙酸在细胞中的浓度是被严格控制在一个很低的范围内,避免使得细胞质的pH发生破坏性的改变。与其它长链羧酸不同,乙酸并不存在于甘油三酸脂中。但是,人造含乙酸的甘油三酸脂,又叫甘油醋酸酯(甘油三乙酸酯)[5],则是一种重要的食品添加剂,也被用来制造化妆品和局部性药物。
乙酸由一些特定的细菌生产或分泌。值得注意的是醋菌类梭菌属的丙酮丁醇梭杆菌,这个细菌广泛存在于全世界的食物、水和土壤之中。在水果或其他食物腐败时,醋酸也会自然生成。乙酸也是包括人类在内的所有灵长类生物的阴道润滑液的一个组成部分,被当作一个温和的抗菌剂。乙酸可以通过其气味进行鉴别。若加入(FeCl3),生成产物为深红色并且会在酸化后消失,通过此颜色反应也能鉴别乙酸。乙酸与三氧化砷反应生成氧化二甲砷,通过产物的恶臭可以鉴别乙酸。乙酸的制备可以通过人工合成和发酵两种方法。合成法,即利用细菌,仅占整个世界产量的10%,但是仍然是生产醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是由生物制备的。75%的工业用乙酸是通过的化制备,具体方法见下。空缺部分由其他方法合成。其他方法
整个世界生产的纯乙酸每年大概有500万吨,其中一半是由生产的。的产量大约是每年100万吨,但是在不断减少。每年也要生产70万吨纯乙酸。每年世界为650万吨,除了上面的500万吨,剩下的150万吨都是回收利用的。在人类历史中,以醋的形式存在的乙酸,一直是用属细菌制备。在充足的情况下,这些细菌能够从含有的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、、米或马铃薯捣碎后发酵。由这些细菌达到的为:
C?H5OH + O? →CH?COOH + H?O
做法是将醋菌属的细菌接种于稀释后的酒精并保持一定温度,放置于一个通风的位置,在几个月内就能够变为醋。醋的方法通过提供氧气使得此加快。是商业化生产所用方法其中之一,被称为“快速方法”或“德国方法”,因为首次成功是在1823年的德国。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,从他的下方自然进入或。改进后的空气供应使得此过程能够在几个星期内完成,大大缩短了制醋的时间。
大部分醋是通过的细菌培养基制备的,由Otto Hromatka和Heinrich Ebner在1949年首次提出。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。部分厌氧细菌,包括的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为。总体反应如下:
C6H12O6==3 CH3COOH
更令工业化学感兴趣的是,许多细菌能够从仅含单碳的化合物中生产乙酸,例如,或与的混和物。
2 CO2 + 4 H2 →CH3COOH + 2 H2O
2 CO + 2 H2 →CH3COOH
梭菌属因为有能够直接使用糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用仍然被限制在一个狭小的范围。大部分乙酸是通过羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,如下
CH3OH + CO →CH3COOH
这个过程是以碘代为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的(第二步中)
⑴ CH?OH + HI →CH?I + H?O⑵ CH?I + CO →CH?COI⑶ CH?COI + H?O →CH?COOH + HI
通过控制反应条件,也可以通过同样的反应生成。因为一氧化碳和甲醇均是常用的,所以甲基一直以来备受青睐。早在1925年,塞拉尼斯公司的Henry Drefyus已经开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此法一度受到抑制。直到1963年,德国化学公司用钴作催化剂,开发出第一个适合工业生产的办法。到了1968年,以铑为基础的催化剂的(cis?[Rh(CO)?I?])被发现,使得反映所需压力减到一个较低的水平并且几乎没有。1970年,美国公司建造了首个使用此剂的设备,此后,铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将商业化,此法是基于钌,使用([Ir(CO)?I?]),它比孟山都法更加绿色也有更高的效率,很大程度上排挤了孟山都法。在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基相比,此法仍然是第二种工业制乙酸的方法。
2CH?CHO+O?→2CH?COOH
可以通过氧化或轻制得,也可以通过水合后生成。当丁烷或轻石脑油在空气中加热,并有多种包括镁,钴,铬以及离子催化,会分解出乙酸。化学方程式如下:
2 C?H?? + 5 O? →4 CH?COOH + 2 H?O
此反应可以在能使丁烷保持液态的最高温度和压力下进行,一般的反应条件是150℃和55atm。副产物包括丁酮,,和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。
在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸:
2 CH?CHO + O? →2 CH?COOH
也能被 氢氧化铜悬浊液氧化:
2Cu(OH)?+CH?CHO→CH?COOH+Cu?O↓+2H?O
使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。由乙烯在催化剂(所用催化剂为:PdCl?、:CuCl?和乙酸锰:(CH?COO)?Mn)存在的条件下,与氧气发生反应生成。此反应可以看作先将乙烯氧化成乙醛,再通过乙醛氧化法制得。丁烷氧化法又称为直接氧化法,这是用丁烷为主要原料,通过空气氧化而制得乙酸的一种方法,也是主要的乙酸合成方法。
2CH?CH?CH?CH? + 5O?=4CH?COOH + 2H?O低压甲醇羰基化法以甲醇,co是由天然气或水煤气获得,甲醇是重要化工原料其货源和价格波动较大。托普索法以单一天然气或煤为原料。第一步:合成气在催化剂下生成甲醇和二甲醚;第二部:甲醇和二甲醚(两者不需提纯)和co羰基化生成醋酸。也叫两步法。BP公司是世界最大的醋酸供应商,世界醋酸生产的70%采用BP技术。BP公司1996年推出Cativa技术专利,Cativa工艺采用基于铱的新催化剂体系,并使用多种新的助剂,如铼、钌、锇等,铱催化剂体系活性高于铑催化剂,副产物少,并可在水浓度较低(小于5%)情况下操作,可大大改进传统的甲醇羰基化过程,削减生产费用高达30%,节减扩建费用50%。此外,因水浓度降低,CO利用效率提高,蒸汽消耗减少。塞拉尼斯也是世界上最大的醋酸生产商之一。1978年,赫斯特-塞拉尼斯公司(现塞拉尼斯公司)在美国得州克莱尔湖工业化投运了孟山都法醋酸装置。1980年,塞拉尼斯公司推出AOPlus法(酸优化法)技术专利,大大改进了孟山都工艺。
AOPlus工艺通过加入高浓度无机碘(主要是)以提高催化剂的稳定性,加入碘化锂和碘甲烷后,反应器中水浓度降低至4%~5%,但羰基化反应速率仍保持很高水平,从而极大地降低了装置的费用。催化剂组成的改变使反应器在低水浓度(4%~5%)下运行,提高了反应产率和分离提纯能力。[6]
它能导致消化系统的严重伤害,以及潜在的致死性血液酸性变化。冰醋酸是最重要的之一。主要用于醋酸乙烯、醋酐、醋酸纤维、醋酸酯和金属醋酸盐等,也用作、医药和染料等工业的和原料,在照相药品制造、织物印染和橡胶工业中都有广泛用途。冰醋酸是重要的有机化工原料之一,它在工业中处于重要地位。醋酸广泛用于合成纤维、涂料、医药、农药、食品添加剂、染织等工业,是国民经济的一个重要组成部分。冰醋酸按用途又分为工业和食用两种,食用冰醋酸可作酸味剂、增香剂。可生产合成食用醋。用水将乙酸稀释至4~5%浓度,添加各种调味剂而得食用醋。其风味与酿造醋相似.常用于番茄调味酱、蛋黄酱、醉米糖酱、、干酪、糖食制品等。使用时适当稀释,还可用于制作蕃茄、芦笋、婴儿食品、沙丁鱼、等罐头,还有酸黄瓜、肉汤羹、冷饮、酸法干酪用于食品香料时,需稀释,可制作软饮料,冷饮、糖果、焙烤食品、布丁类、胶媒糖、调味品等。作为酸味剂,可用于调饮料、罐头等。洗涤通常使用的冰醋酸,浓度分别为28%,56%,99%的.如果买的是冰醋酸,把28CC的冰醋酸加到72CC的水里,就可得到28%的醋酸。更常见的是它以56%的浓度出售,这是因为这种浓度的醋酸只要加同量的水,即可得到28%的醋酸。浓度大干28%的醋酸会损坏醋酸纤维和纤雏。是有机酸中的之一,在高锰酸钾的酸性溶液中,草酸易被氧化生成二氧化碳和水.草酸能与碱类起中和反应,生成。醋酸也一样,28%的醋酸具有挥发性,挥发后使织物是中性;就象可以中和酸一样,28%的醋酸也可以中和碱。碱也会导致变色。用酸(如28%的醋酸)即可把变色恢复过来. 这种酸也常用来减少由复合物、茶、咖啡、果计、软饮料以及啤酒造成的黄渍。在去除这些污渍时,28%的醋酸用在水和中性之后,可用到最大程度。乙酸具有防腐剂的作用。1.5%就有明显的抑菌作作用。在3%范围以内,避免了霉斑引起的肉色变绿变黑。浓度超过3%时,对肉色有不良影响,可用3%乙酸+3%抗坏血酸处理保持肉色。[7-16]
方法名称:冰醋酸—冰醋酸的测定—中和滴定法
应用范围:该方法采用滴定法测定冰醋酸中冰醋酸的含量。
该方法适用于冰醋酸。
方法原理:供试品加新沸过的冷水与指示液,用氢氧化钠滴定液滴定,根据滴定液使用量,计算冰醋酸的含量。
试剂:1. 氢氧化钠滴定液(1mol/L)36%乙酸
2. 酚酞指示液(酚酞指示液不变色)
3. 基准邻苯二甲酸氢钾
4.紫色石蕊溶液(紫色石蕊溶液变红)
仪器设备:
试样制备:1.氢氧化钠滴定液(1mol/L)
配制:取氢氧化钠适量,加水振摇使溶解成饱和溶液,冷却后,置聚乙烯塑料瓶中,静置数日,澄清后备用。取澄清的氢氧化钠饱和溶液56mL,加新沸过的冷水使成1000mL,摇匀。
标定:取在105℃干燥至恒重的基准邻苯二甲酸氢钾约0.6g,精密称定,加新沸过的冷水50mL,振摇,使其尽量溶解,加酚酞指示液2滴,用本液滴定,在接近终点时,应使邻苯二甲酸氢钾完全溶解,滴定至溶液显粉红色。每1mL氢氧化钠滴定液(1mol/L)相当于204.2mg的。根据本液的消耗量与的取用量,算出本液的浓度。
贮藏:置聚乙烯塑料瓶中,密封保存;塞中有2孔,孔内各插入玻璃管1支,1管与钠管相连,1管供吸出本液使用。
取酚酞1g,加乙醇100mL使溶解。
操作步骤:取供试品约4mL,置称定重量的具塞锥形瓶中,精密称定,加新沸过的冷水40mL与酚酞指示液3滴,用氢氧化钠滴定液(1mol/L)滴定。每1mL氢氧化钠滴定液(1mol/L)相当于60.05mg的C?H?O?。
注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积的精度要求。[17]急性毒性:LD50:3.3 g/kg(大鼠经口);1060 mg/kg(兔经皮)。LC50:5620 ppm,1 h(小鼠吸入);12.3 g/m3,1 h(大鼠吸入)。人经口1.47 mg/kg,最低中毒量,出现消化道症状;人经口20~50 g,致死剂量。80%浓度的醋酸能导致豚鼠皮肤的严重灼伤,50%~80%产生中等度至严重灼伤,小于50%则很轻微,5%~16%浓度从未有过灼伤。人不能在2~3 g/m?3浓度中耐受3 min以上。人的口服致死量为20~50 g。
亚急性和慢性毒性:本品浓度在100 mg/m3左右时慢性作用可使工人的鼻、鼻咽、睑和咽喉发生炎症反应,甚至引起支气管炎。人吸入(200~490)mg/m3×(7~12)年,有眼睑水肿、结膜充血、、等症状。
致突变性:微生物致突变:大肠杆菌300 ppm(3 h)。姊妹染色单体交换:人淋巴细胞5 mmol/L。
生殖毒性:大鼠经口最低中毒剂量(TDL0):700 mg/kg(18 d,产后),对新生鼠行为有影响。大鼠睾丸内最低中毒剂量(TDL0):400 mg/kg(1 d,雄性),对雄性生育指数有影响。
健康危害:侵入途径为吸入、食入、经皮吸收。吸入后对鼻、喉和呼吸道有刺激性。对眼有强烈刺激作用。皮肤接触,轻者出现红斑,重者引起化学灼伤。误服浓乙酸,口腔和消化道可产生糜烂,重者可因休克而致死。
慢性影响:眼睑水肿、结膜充血、慢性咽炎和支气管炎。长期反复接触,可致皮肤干燥、脱脂和皮炎。
环境危害:对环境有危害,对水体可造成污染。[18]闪点(℃):39
爆炸极限(%):4.0~17
:可能有聚合危害
燃烧性:自燃温度:463℃
危险特性:能与发生强烈反应,与与等反应剧烈。稀释后对金属有腐蚀性。
浓度较高的乙酸具有腐蚀性,能导致皮肤烧伤,眼睛永久失明以及黏膜发炎,因此需要适当的防护。上述烧伤或水泡不一定马上出现,很大部份情况是暴露后几个小时出现。乳胶手套不能起保护作用,所以在处理乙酸的时候应该带上特制的手套,例如丁腈橡胶手套。浓缩乙酸在实验室中燃烧比较困难,但是当环境温度达到39℃(102℉)的时候,它便具有可燃的威胁,在此温度以上,乙酸可与空气混合爆炸(爆炸极限4%~17%体积浓度)。
乙酸的危害和乙酸溶液的浓度有关。下表中例举了乙酸溶液的欧盟分级:
  (质量)
1.67–4.16 mol/L
4.16–14.99 mol/L
&14.99 mol/L
因为强烈的刺激性气味及腐蚀性蒸汽,操作浓度超过25%的乙酸要在眼罩下进行。稀乙酸溶液,例如醋,是无害的。然而,摄入高浓度的乙酸溶液是有害人及动物健康的。污染排放类别:Z
泄漏处理:切断,穿戴好防护眼镜、和耐酸工作服,用大量水冲洗溢漏物,使之流入航道,被很快稀释,从而减少对人体的危害。用、干粉、抗醇、二氧化碳、灭火。用水保持火场中容器冷却。用雾状水驱散蒸气,赶走泄漏液体,使稀释成为不燃性混合物。并用水喷淋去堵漏的人员。皮肤接触:皮肤接触先用水冲洗,再用肥皂彻底洗涤。
眼睛接触:眼睛受刺激用水冲洗,再用干布拭擦,严重的须送医院诊治。
吸入:若吸入蒸气得使患者脱离污染区,安置休息并保暖。
食 入:误服立即漱口,给予催吐剂催吐,急送医院诊治。呼吸系统防护:空气中深度浓度超标时,应佩戴防毒面具。
眼睛防护:戴化学安全防护眼镜。
手防护:戴橡皮手套。
其它:工作后,淋浴更衣,不要将工作服带入生活区。RTECS号:AF1225000
危险品标志:C:Corrosive
风险术语:R10
安全术语:S23
S23Do not breathe vapour.
切勿吸入蒸汽。
S26In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.
不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。
S45In case of accident or if you feel unwell, seek medical advice immediately (show the label whenever possible.)
若发生事故或感不适,立即就医(可能的话,出示其标签)。
风险术语 R10Flammable.
R35Causes severe burns.
引起严重灼伤。密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防酸碱塑料工作服,戴橡胶耐酸碱手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、碱类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。储存于阴凉、通风的库房。远离火种、热源。冻季应保持库温高于16℃,以防凝固。保持容器密封。应与氧化剂、碱类分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。本品铁路运输时限使用铝制企业自备罐车装运,装运前需报有关部门批准。铁路非罐装运输时应严格按照铁道部《危险货物运输规则》中的危险货物配装表进行配装。起运时包装要完整,装载应稳妥。运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。运输时所用的槽(罐)车应有接地链,槽内可设孔隔板以减少震荡产生静电。严禁与氧化剂、碱类、食用化学品等混装、混运。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。用焚烧法处置。
新手上路我有疑问投诉建议参考资料 查看

我要回帖

更多关于 乙醛脱氢酶 的文章

 

随机推荐