微纳金属探针的主要作用3D打印技术应用:AFM探针

微纳加工技术随着器件小型化和高集成度的快速发展微电子工业的芯片制造工艺逐渐向10 nm 甚至单纳米尺度逼近时,传统的电子束曝光(electron beam lithographyEBL)技术和极紫外光刻(extreme ultraviolet lithography,EUV)技术已难以满足未来技术的发展需求亟需发展一种能在纳米尺度实现高分辨率、高稳定度、高重复性和大吞吐量且价格适宜的曝光技术。原子力显微術作为一种具有纳米级甚至原子级空间分辨率的表面探测表征技术其在微纳加工领域的应用为单纳米尺度的器件制备提供了新的思路和契机,具有广阔的应用前景[10]在过去的几十年中,基于AFM平台发展出的微纳加工技术得到更广泛的应用尤其是局域热蒸发刻蚀技术和低能場发射电子的刻蚀技术(如图4 所示),可以在大气环境下成功实现纳米尺度的图案加工并可及时对图案进行原位形貌表征,设备简单且使用方便AFM局......

奥林巴斯显微镜cx41是一款临床研究级显微镜,采用了奥林巴斯先进的UIS2光学系统只需要通过简单的附件即可扩展明场,相差荧光等等附件,可以连接数码相机或者单反相机显微数码CCD摄像头等。  在这款显微镜上光学性能得到了极大的提高,实现多种观察方式是一款极具性价比的高质量显微镜。不单在光学性

  徕卡Leica显微镜DM6B是进口的精密数码全自动显微镜显微镜在经销的过程中是散装的,┅般的专业的经销商会在用户收到货物的12小时内免费上门组装,或者执行电话指导然而有些用户在购买之后,却并不能等到这些就開始私自安装,那么用户在安装时一定要注意正确的安装顺序和方法,切忌自己胡乱安装

随着人类的发展,显微镜的种类也越来越多可观察的范围也越来越广,我们对光学显微镜的分类作一个了解    根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。    1、生物显微镜是zui常见的一种显微镜在很多实验室中都可以见到,主要是用来观察生

简介:体视显微镜又称“实体显微镜”“立体顯微镜”或称“操作和解剖显微镜”,是一种具有正像立体感地显微镜被广泛地应用于材料宏观表面观察、失效分析、断口分析等工业領域。是一种具有正像立体感地目视仪器被广泛地应用于生物学、医学、农林、工业及海洋生物各部门。 原理:体视显微镜的光路设计囿两种

从人类发明显微镜到现在已经几百年历史了人类发明了显微镜,标志着人类进入了原子时代的新时期人类观察到了用肉眼所看鈈到的东西,在显微镜没有发明之前人类只能用透镜帮助我们看到小一点的东西,就先现在的光学显微镜就可以把物体放大到1600多倍能汾辨到0.1微米的极限,显微镜把我们带入了一个全新的的事

显微镜发明之前,人类关于周围世界的观念仅仅局限于肉眼或者靠手持透镜幫助肉眼来进行观察。显微镜把一个全新的世界展现在人类的视野里人们开始能够观察到无数的微小动物和植物,以及从人体到植物纤維等各种东西的内部构造同时,显微镜还有助于科学家发现新物种、医生治疗疾病、工业发展进步光学显微镜是利用光学原

说到生物,大家就会想到一个一个形态各异的细胞但是要观察细胞形态的细微变化,一架性价比高的显微镜是必不可少的 从列文虎克发明第一架光学显微镜至今,显微镜为了满足观察者的需要而不断更新换代目前,生物细胞培养最常用的就是荧光显微镜可以用于观察绿色,紅色和蓝色三种荧光 另外,从观察活细

培养活细胞可用相差显微镜也可用缩时摄影直接记录活细胞的动态变化,还可将离体活细胞染銫 一、相差显微镜直接观察法: 活细胞对光线是透明的,光线通过活细胞时波长和振幅几乎没有改变,所以用普通光镜无法看清未经染色的活细胞为了观察活细胞的结构,则需要通过其他途径提高结构的反差20世纪30年

看鱼病用什么显微镜?鱼生病用什么仪器进行检查用显微镜对病鱼进行检测的详细步骤如何对鱼病进行防治?对鱼身上的寄生虫观测是检测鱼病的zui要方法之一一般采用镜检。用显微镜解剖镜,放大镜对鱼病进行检测简称镜检。镜检是在鱼病情况比较复杂仅凭肉眼不能作出正确诊断时而进行的更深层次的检查。当┅尾病鱼到

金相显微镜的专业术语金相显微镜是一种常用的光学仪器,在多个行业中都有一定的应用我们在使用金相显微镜的时候对於它的专业术语都是需要了解的,这对于用户的使用是非常重要的下面小编就来为大家具体介绍一下金相显微镜的专业术语有哪些吧,唏望可以帮助到大家数值孔径数值孔径是金相显微镜的物镜和聚光镜的主要技

能否分辨物体的细节,主要决定于物镜的分辨率(zui小可分辨距离)而分辨率又决定于物镜的数值孔径与光波波长。但是单有物镜的高分辨率,没有足够的放大倍数是不能满足显微观察要求嘚,相反放大倍数过高,也会使分辨率下降因此,要看清物象的细节保证物镜分辨率与足够的放大倍酞显微镜zui合适的总放大倍数

 反射金相显微镜(正置金相显微镜)用于观察金属探针的主要作用陶瓷、集成块、印刷电路板、液晶板、薄膜、纤维、镀涂层以及其它非金屬探针的主要作用材料,也适合医药、农林、学校、科研部门作观察分析用同时也是金属探针的主要作用学、矿物学、精密工程学、电孓学等研究的理想仪器。  数码型反射金相显微镜(三目正置金相显微镜)

(1)酶标试剂:酶标抗体仅需适当底物和普通光学显微镜即可高度敏感地检出抗原由于信号是通过吸收光的差异,而非发射光来检测底物的不溶性显色产物分布在酶所在位置的周围区域,因此这种检测方法尚不能达到荧光技术的分辨率 酶反应后出现沉淀,在酶所处位置周围产生不溶性显色产物通过底物的显色来检出

 倒置荧光显微镜昰近代发展起来的新式荧光显微镜,特点是激发光从物镜向下落射到标本表面即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器它与光铀呈45。角激发光被反射到物镜中,并聚集在样品上样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,

  日前舜宇仪器公司显微镜家族又添新丁,DVST60N、DVSZMN视频显微镜相继问世标志着该公司数码显微镜的开發迈上了一个新台阶。   视频显微镜是将显微镜看到的实物图像通过数模转换使其成像在液晶显示屏上进行观察的显微镜。它是光学顯微镜技术、光电转换技术完美结合的产物从而使我们对微观领域

如何挑选合适的显微镜?不同显微镜对应不同的研究实验有不同功能在选购之前应该先了解什么类型的显微镜适合您做实验的被检样品。 显微镜根据观测样品的不同可以按功能来划分:一般有金相显微镜、偏光显微镜、体视显微镜、暗场显微镜、生物显微镜、荧光显微镜等而不同的功能显微镜用法也不同,像偏光显微镜主用应用于像

显微镜数码摄像头单筒显微镜、体视显微镜、金相显微镜、生物显微镜、偏光显微镜等种显微镜成像、图像拍摄采集及工业检测、医学显微圖像和机器视觉领域的应用   显微镜数码摄像头纯数字信号通过USB2.0与计算机相连,实现高分辨率的实时预览1280H X 1024V分辨率全屏幕清晰显示,圖片格式

偏光显微镜法观察聚合物球晶结构晶体和无定形体是聚合物聚集态的两种基本形式很多聚合物都能结晶。聚合物在不同条件下形成不同的结晶比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶结晶聚合物材料的实际使用性

最早的雏形应该是相机型显微镜,将显微镜下得到的图像通過小孔成象的原理投影到感光照片上,从而得到图片或者直接将照相机与显微镜对接,拍摄图片随着CCD摄像机的兴起,显微镜可以通過其将实时图像转移到电视机或者监视器上直接观察,同时也可以通过相机拍摄80年代中期,随着数码产业以及电脑业的发展显微

金楿显微镜的显微摄影(上) 显微观察是金相摄影的基础。金相工作者对自己所制备的试样经过观察感到有摄影的必要,可利用摄影装置紦金相组织拍摄下来显微摄影过程包括:选定摄影用的物镜、目镜和滤色片,安装摄影装置调整光源,调节光栏选择胶卷,摄影对焦摄影曝光等。 1.摄影有效放大倍

  “显微镜是实验室必备的科学仪器它是检验医学和生命科学研究领域不可缺少的角色。”这是使用奥林巴斯显微镜光学仪器的许多医务工作者和科研人员的心声  事实上,中科院、北大、清华、复旦等各全国知名的研究机构、夶学实验室均有奥林巴斯的产品支持包括干细胞研究等领域的科研工作。  据介绍意大利人马尔皮

显微镜倍率的计算方式: 如何计算显微镜倍率呢,请看下面内容:光学总放大倍率=目镜的倍率X物镜放大倍率(如有附加物镜也要把附加物镜算上)数字总放大倍率=物镜X摄像目镜放大率X数字放大率 (如有附加物镜,也要把附加物镜算上)以体视显微镜为例:当体视显微镜目镜的倍率为10倍变倍体变

 (二)倒置显微鏡 倒置显微镜与正置显微镜的主要区别在于物镜位于载物台下方,这样有利于观察时在上方对样品进行一些实时操作倒置显微镜操作过程基本与双筒的正置显微镜相似,需注意以下几点:观察时可调节铰链式双目目镜至舒适的位置组织培养液或水溅到载物台上、物镜上戓显微镜镜架上可能会损

  生物显微镜与金相显微镜的区别在哪里,好多对显微镜不熟悉的人会问道这个问题导致他们在选择显微镜嘚时候造成一定的困恼,   生物显微镜与金相显微镜的区别:   首先他们用来观察的物体不一样金相显微镜用于工业,主要观察金屬探针的主要作用、岩矿等的内部组织、及半导体、电子工业进行晶体、集成电路的检验和科学研究

生物显微镜对大家来说都很熟悉金楿显微镜很多人都不了解是做什么的?今天小编为大家介绍一下金相显微镜和生物显微镜的区别小编最早接触到的显微镜就是生物显微鏡,是在上初中的时生物课上用生物显微镜观察洋葱切片,观察细胞等生物显微镜是用来观察生物切片、生物细胞、细菌以及活体组織培养、流质沉淀等的观察和研

     扫描隧道显微镜(STM)使人类第一次能够直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的粅理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。很多材料在低温条件下表现出一些新奇的物理性质,如超导、量子霍尔效应、电荷密度波和量子

扫描探针显微镜(SPM s )是用来探测表面性质的仪器家族,是由B inn ig 和Roh rer 等人最早于1982年发明[1]虽然SPM 在目前可以测量许多表面的其它性质,但是揭示表面形貌一直是它的主要应用目的。SPM 是我们这个时代中最为有力的表面测量工具,其测量表面特征的尺寸可以从原孓间距

徕卡显微镜开发了一系列解决方案以满足不同的应用和预算。可实现更高的试样工作效率与正置显微镜不同,您只需将试样放置在工作台上并聚焦到表面一次,便可对所有放大倍率和更多试样保持聚焦试样切换速度可以加快4倍。您还将受益于以下两个方面:笁作空间大可以轻松地定位大而沉重的试样。徕卡显微镜允许您使用重

简单来说比较显微镜就是在两个并排放置的显微镜上,通过一個视野进行观察专用于光学显微镜像比较的显微镜。比较显微镜在结构上与其他类型显微镜相对比而言并没有什么很特别的地方,可鉯说就是把两台显微镜合并在同一个镜架上再由两个显微镜上所形成的像通过棱镜系统,从两个半圆形的光阑中投射到一个双目镜筒的兩个

今天和大家谈谈光学显微镜当中zui重要的部件:物镜为什么是zui重要且没有之一呢?因为科研工作者们关心的解析度、信噪比等与成像質量息息相关的参数都是由物镜决定的当然,显微镜的其他部分也一样不可或缺但是篇幅有限,即便是物镜我们也只能浅尝辄止的談一谈。 在生命科学研究领域光学显微镜的

摘要: 扫描探针显微镜(Scanning Probe MicroscopeSPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜。

扫描探针显微镜的特点及应用

MicroscopeSPM)是扫描隧道显微镜及在扫描隧噵显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜,静电力显微镜磁力显微镜,扫描离子电导显微镜扫描电化学显微镜等)的统称,是国际上近年发展起来的表面分析仪器是综合运用光电子技术、激光技术、微弱信号检测技术、精密机械设计和加工、自动控制技术、数字信号处理技术、应用光学技术、计算机高速采集和控制及高分辨图形处理技术等现代科技成果的光、机、电一体化的高科技产品。

SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:

首先SPM具有极高的分辨率。它可以轻易的“看到”原子这是一般显微镜甚至电子显微镜所难以达到的。

其次SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器昰通过间接的或计算的方法来推算样品的表面结构也就是说,SPM是真正看到了原子

再次,SPM的使用环境宽松电子显微镜等仪器对工作环境要求比较苛刻,样品必须安放在高真空条件下才能进行测试而SPM既可以在真空中工作,又可以在大气中、低温、常温、高温甚至在溶液中使用。因此SPM适用于各种工作环境下的科学实验

SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科还是材料、微电孓等应用学科都有它的用武之地。

SPM的价格相对于电子显微镜等大型仪器来讲是较低的

同其它表面分析技术相比,SPM 有着诸多优势不仅可鉯得到高分辨率的表面成像,与其他类型的显微镜相比(光学显微镜电子显微镜)相比,SPM扫描成像的一个巨大的优点是可以成三维的样品表媔图像还可对材料的各种不同性质进行研究。同时SPM 正在向着更高的目标发展, 即它不仅作为一种测量分析工具而且还要成为一种加笁工具, 也将使人们有能力在极小的尺度上对物质进行改性、重组、再造.SPM 对人们认识世界和改造世界的能力将起着极大的促进作用同时受制其定量化分析的不足,因此SPM 的计量化也是人们正在致力于研究的另一重要方向这对于半导体工业和超精密加工技术来说有着非同一般的意义。

扫描隧道显微镜(STM)在化学中的应用研究虽然只进行了几年但涉及的范围已极为广泛。因为扫描隧道显微镜(STM)的最早期研究工作是茬超高真空中进行的因此最直接的化学应用是观察和记录超高真空条件下金属探针的主要作用原子在固体表面的吸附结构。在化学各学科的研究方向中电化学可算是很活跃的领域,可能是因为电解池与扫描隧道显微镜(STM)装置的相似性所致同时对相界面结构的再认识也是電化学家们长期关注的课题。专用于电化学研究的扫描隧道显微镜(STM)装置已研制成功

SPM近些年来应用的领域越来越多,其中主要的除了获得高分辨的二维和三维表面形貌外在线监测是个热点,其中包括了生物活体的在线监测和物理化学反应的在线监测在材料领域中,人们利用它来研究腐蚀的微观机理腐蚀是一种发生在固体与气体或液体分界面上的现象。虽然通常人眼就可以看到腐蚀造成的结果但是腐蝕都是从原子尺度开始的。在生物医学研究对象也从最初的DNA迅速扩大到包括细胞结构、染色体、蛋白质、膜等生物学的大部分领域更为偅要的是,SPM作为静态观察还可以实现动态成像,按分子设计制备具有特定功能的生物零件、生物机器、将生物系统和微机械有机地结合起来在微机械加工方面:由于SPM 的针尖曲率半径小,且与样品之间的距离很近( < 1nm),在针尖与样品之间可以产生一个高度局域化的场包括力、電、磁、光等。该场会在针尖所对应的样品表面微小区域产生结构性缺陷、相变、化学反应、吸附质移位等干扰并诱导化学沉积和腐蚀,这正是利用SPM 进行纳米加工的客观依据同时也表明,SPM不是简单用来成像的显微镜而是可以用于在原子、分子尺度进行加工和操作的工具

在纳米尺寸、分子水平上SPM是最先进的测试工具,它在材料及微生物学科中发挥了非常重要的作用可以预测在今后新材料的发展以及揭礻生命领域的一些重要的问题上将会发挥重要作用。结合SPM家族中的各类分析手段例如MFM,SKPFMAFM等,收集材料的各种信息对材料进行纳米级囷原子级别的原位观察,具有重要的意义

任何事物都不是十全十美的一样,SPM也有令人遗憾的地方由于其工作原理是控制具有一定质量嘚探针进行扫描成像,因此扫描速度受到限制 测效率较其他显微技术低;由于压电效应在保证定位精度前提下运动范围很小(难以突破100μm量級),而机械调节精度又无法与之衔接故不能做到象电子显微镜的大范围连续变焦,定位和寻找特征结构比较困难;

扫描探针显微镜中最为廣泛使用管状压电扫描器的垂直方向伸缩范围比平面扫描范围一般要小一个数量级扫描时扫描器随样品表面起伏而伸缩,如果被测样品表面的起伏超出了扫描器的伸缩范围则会导致系统无法正常甚至损坏探针。因此扫描探针显微镜对样品表面的粗糙度有较高的要求;

由於系统是通过检测探针对样品进行扫描时的运动轨迹来推知其表面形貌,因此探针的几何宽度、曲率半径及各向异性都会引起成像的失嫃(采用探针重建可以部分克服)。

纳米加工新制造技术充分体现科技的魅力
    纳米技术已逐渐发展成为21世纪的三大主流技术(纳米技术、生物技术和空间信息技术)之一,也是多国研究的热点领域多国巳将纳米技术与产业的发展水平视作在未来经济中能否处于有利地位的关键问题,它的重要意义已受到外科技教育界的广泛认同

     纳米技術一般指纳米级(0.1~100nm)的材料、设计、制造、测量、控制和产品的研究、加工、制造以及应用技术。在基础科技以及制造行业中纳米制慥技术及纳米加工技术的研究从其诞生之初就一直牢牢占据行业的位置。   随着科学和工业的发展对加工精度提出了越来越高的要求,传統的机床及加工方法的加工精度已经远远不能满足飞速发展的消费及军工领域的需求如电子硅芯片、大规模集成电路,以及对表面粗糙喥值要求高的液晶面板等于是,人们把眼光投入到精度更高的加工技术上从初的毫米级,到微米级再到纳米级(千分之一微米),於是“纳米技术”这一概念就应运而生了。     21世纪以来由半导体微电子技术引发的微型化革命进入了一个新的时代,这就是纳米技术时玳纳米技术是制作和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm     功能结构的纳米化带来的不僅仅是能源与原材料的节省,而且会导致多功能的高度集成使生产成本大大降低。纳米技术不但推动着科技的进步而且造就了现代知識经济的物质基础。     纳米技术依赖于纳米尺度的功能结构与器件实现功能结构纳米化的基础是的纳米加工技术。现代纳米加工技术已经能够将数亿只晶体管制作在方才大小的芯片上小电路尺寸为45nm的集成电路芯片已经进入大批量生产阶段,32nm集成电路也开始试生产22nm的集成電路已经在研发阶段。除了集成电路芯片中的晶体管越做越小外纳米加工技术还可以将普通机械齿轮传动系统微缩到肉眼无法观察的尺団。还可以制作检测单个分子的传感器可以实现单个分子与原子操纵,还可以制作基于碳纳米管或纳米线的晶体管纳米加工技术可以搭建人类进入微观的桥梁,是人类了解及利用微观的工具因此,了解纳米加工技术对于理解纳米技术以及由纳米技术支撑的现代高科技产业是非常重要的。 另外纳米加工技术的应用领域也得到了很大拓展。到目前为止纳米加工技术已经被广泛应用于军工和民用产品Φ。主要的纳米加工技术的应用有规模集成电路技术,纳米电子技术、光电子技术、高密度磁存储技术、微机电系统技术、生物芯片技術及纳米技术等  所谓加工,是指运用各种工具将原材料改造成为具有某种用途的形状某些机械加工(如现代磨削或抛光加工)的精度鈳以达到微米或纳米量级,但这里的微米或纳米是指工件外形尺寸的精度而纳米加工不同于传统机械加工,其本质的区别是加工形成的蔀件或结构本身的尺寸在纳米量级  目前关于纳米制造领域的研究还主要集中于制取纳米材料,提示新的现象开发新的分析测试工具和淛造新的纳米功能器件等。形成纳米结构的加工技术主要采用两种方式:一是“自上而下”的方式二是“自下而上”的方式。目前虽嘫要实现工业化规模的纳米制造加工技术还有诸多难点,但随着科技的发展和进步纳米加工技术的发展前景还是被看好的。  Feynman提出的纳米加工方式该方法的基本工作原理就是一次又一次地削去材料的某些部分,即可得到逐步变小后的结构因此,“自上而下”的方式本质昰对块体材料进行切割处理获得所需的材料及结构,这与现代制造加工方法并无本质区别采用这种方法能达到的小特征尺寸取决于所使用的工具。这种纳米加工方式主要有以下几种方法:    (1)定型机械纳米加工:采用专用刀具可以通过刀具小的表面粗糙度值和切削刃精度来保证被加工工件的外形尺寸精度,小去除量能达到0.1nm为金刚石车削、微米铣削及微纳米磨削等。     LODTM型立式大型光学金刚石车床是全度高的超机床它采用恒温油淋浴系统,使油温控制在(20±0.005)℃消除了加工中的热变形,定位精度达28nm实现了直线误差为每米±25nm的加工,主要用于加工平面、球面和非球面激光核聚变工程的零件、红外线装置用零件以及大型天体望远镜、化学激光腔光学器件  美国Precitech公司和Moore公司是的商品化超机床制造商,两公司生产的系列化超机床代表了当今商品化超机床的技术水平和发展趋势Moore公司的Nanotech250UPL在加工直径为250mm的高纯合金铝球面镜时,金刚石超车削所能达到的加工精度面型误差(P-V)≤0.125?m表面粗糙度值Ra≤3.0nm。    大型CNC超磨床是大型关键零件超加工的重要设备它不但要求有,还要求机床的结构刚度高、传动刚度高、结构阻尼大    英国CRANFIELD精度工程研究所研制的OAGM2500大型CNC超磨床是美国Kodak-Rochester开发的加工大型离軸非球面光学零件的机床。可加工工件尺寸为:2.5m×2.5m×0.61m采用液体静压轴承和磨擦传动方式,激光干涉仪位置测量与反馈分辨率为2.5nm;平面加工精度可达1?m;表面粗糙度值Ra=2~3nm,加工的离轴非球面镜精度可达2.5?m抛光后再用Kodak公司的2.5m离子束抛光设备对零件进行修形处理,工件则可達到高的精度  为了实现大型光学自由曲面的磨削加工,国外研制的大型CNC超磨床采用了一种新的设计理念。这一理念优先考虑大载荷条件下磨粒切入深度的动态控制需要在磨削大尺寸玻璃、陶瓷部件的复杂形状及低陡度自由曲面时,可得到低的亚表面损伤该机床可用於加工直径1m的自由曲面光学镜与陶瓷材料,加工精度达1?m  FANUC公司于2004年研制出了ROBONANO超微细加工机床。该机床具有加工3D复杂自由曲面的能力系統地解决了超高微切削加工难题。该机床具有5轴铣、5轴车、5轴磨、5轴刨床和高速成型等加工功能切削时完全使用单点金刚石刀具。配有PZT(锆钛酸铅)压电陶瓷抛引器的3kHz快速刀具伺服系统该机床直线度可达到±2nm,分辨率可达0.000?01°,可用于加工镜面,微模具及其他小型超零部件。    超加工技术具有单项技术的限、常规技术的突破和新技术综合3个方面永无止尽追求的特点实现超加工需要具备许多条件。超加工機床是超加工重要、基本的加工设备是实现超加工的物质基础。    (2)磨粒纳米加工:是目前超加工的主要方法包括研磨技术、抛光技術和磨削技术。研磨手可以加工任何固态材料研磨已成为光学加工中一种非常重要的加工方法,起着不可替代的作用纳米级研磨加工方法主要有以下几种:①弹性发射加工。它是使用一种软的聚亚胺酯球(在微小压力下很容易发生变形)作为抛光工具同时控制旋转轴與加工工件的接触线保持45°。研磨用微粉粒径为亚微米,微粉与水混合,并强迫其在旋转的聚亚胺脂球面下方加工工件,并保持球与工件间的距离稍大于微粉尺寸。此法可以使被加工零件的表面(包括形状和变质层等)实现表面的要求。②磁流变抛光技术。磁流变抛光技术是利用磁流变液(它含有去离子水、铁质微粉、磨粒和经处理过的其他物质)的特性来改变其在磁场中的黏性磁流变液由泵驱动稳定地循環。在有磁力作用的区域时其表现为固体形态,进行研磨;而在无磁力作用时其表面为液体形态,两种形态在整个循环中交替出现甴于其黏度可以通过监控,使其变动范围保持在±1%内为此,磁流变抛光是一个可控的加工方法该方法不但材料去除能力(尺寸及去除量)的调节非常简单,而且被加工表面质量好从而可在保持相对高的、稳定的去除率的同时,加工出表面质量无损伤的表面。③固着磨料高速研磨技术固着磨料高速研磨技术是在20世纪60年代发展起来的,如针对铸铁结合剂金刚石固着磨料砂轮采用电解修整(ELID)。在线電解修锐磨削具具有以下几个特点:磨削过程具有良好的稳定性ELID修整可在研磨过程中控制磨粒锐度,使磨具始终保持率研磨的能力工件的表面质量也十分稳定;该修整法使金刚石砂轮不会过快磨损,提高了贵重磨料的利用率;该修整法使磨削过程具有良好的可控制性;采用ELID法磨削可以容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的残留裂纹采用该修整法修整的砂轮,对硬质合金和光学玻璃進行超研磨表面粗糙度值Ra分别达到10.7nm和16.7nm。④化学机械抛光技术化学机械抛光技术是利用固相反应抛光原理的加工方法,原则上可以加工任何材料为目前应用为广泛的一种抛光方法,其抛光质量高和效率较高技术比较成熟。此方法几乎是迄今可以提供全局平面化的表面精加工技术可广泛用于集成电路芯片、MENS系统、计算机硬磁盘、光学玻璃、蓝宝石、单晶硅、砷化镓及氮化硅等表面的平整化。都可以获嘚光滑无损伤表面(表面粗糙度值Ra约为0.1nm)    (3)非机械纳米加工:包括聚集离子束加工、微米级电火花加工、准分子激光加工和飞秒激光加工。    聚焦离子束加工主要包括定点切割、选择性的材料蒸镀、强化性蚀刻或选择性蚀刻及蚀刻终点侦测等方法目前商用机型的加工精喥可以低于25nm。     微米级电火花加工实现微细电火花加工的关键在于工具电(微小轴)的在线制作、微小能量放电电源、工具电的微量伺服進给、加工状态检测与系统控制以及加工工艺方法等。对微细电火花加工技术的不断研究探索已使其在与MENS制造结合及实用化方面取得了長足进展,其加工对象已由简单的圆截面微小轴、孔拓展到复杂的微小三维结构    准分子激光加工。由于准分子激光波长短(193~351nm)光子能量大,加工时的低热效应以及穿透深度小以及激光融化快速凝固所以可用来进行材料的去除(包括微加工、激光刻蚀等),另外还可鼡来对工件清洗、抛光对材料进行表面改性和冲击强化处理。  飞秒激光加工飞秒激光的加工机理与以往的长脉冲激光(CO2激光、Na:YAG激光)加工不同,它能以快的速度将其全部能量注入到很小的作用区域瞬间内高能量密度的沉积,可以避免线性吸收、能量转移和扩散过程等影响从本质上改变了激光与工作物质互相作用的机制,使其加工方式成为具有超高空间分辨率及超高加工广泛性的冷加工过程。这茬微电子、光子学及微光机电系统(MOEMS)等高技术领域应用前景巨大飞秒激光可以进行超精细微加工与常规激光相比具有以下几个特点:加工尺度小,可以实现超微细(亚微米至纳米级)加工;加工热影响区小可以实现的非热熔性加工。飞秒激光没有热扩散加工边缘整齊及精度高;能克服等离子体屏蔽,具有稳定的加工阈值加工效率高;飞秒激光加工过程具有严格的空间定位能力,可实现透明材料内蔀的任意位置的三维超精细加工;飞秒激光的峰值功率高可实现对任何材料的精细加工,而与材料的种类及特性无关飞秒激光可以微細加工玻璃、陶瓷、各种电介质材料、各种半导体、聚合物以及各种生物材料乃至生物组织,特别是对熔点相对较低且固导热性好而易產生热扩散的金属探针的主要作用材料进行的微细加工。  (4)光刻加工:采用光刻方法在物体上制作纳米级图案需要大幅度提高光刻加笁的分辨率。光刻加工主要用于制造二维形状在制造三维立体外形时受较大限制。目前常用的方法有以下几种:①光学曝光曝光是芯爿制造中关键的制造工艺,光学曝光技术不断创新现代曝光技术不仅要求高的分辨率,而且要有工艺宽容度和经济性1997年美国GCA公司推出叻世上台分步重复投影曝光机,被视为曝光技术的一大里程碑②X射线光刻技术。X射线光刻采用软X射线波段光源是一种接近式光刻。此技术具有分辨率高、曝光相场大、焦源大、工艺简单、光刻工艺宽容度大、产量大、X射线掩模可以自复制、与集成电路工艺兼容性好、光刻分辨率技术延伸性大及技术成熟等优点此技术能满足规模集成电路迅猛发展的需求,已成为光刻技术的研究的热点③电子束直写光刻技术。电子束具有波长短、分辨率高 深长、易于控制和修改灵活等特点,广泛应用于光学和非光学曝光的掩模制造在系统集成芯片嘚开发中,电子束直写比其他方法更具灵活性它可直接接受图形数据成像,无需复杂的掩模制作因此前景十分诱人。采用电子束曝光淛作的小器件尺寸可达10~20nm④纳米压印技术。纳米压印技术是华裔科学家周郁在1995年发明的一种光刻技术纳米压印是加工聚合物结构的常鼡方法,它采用高分辨率电子束等方法将结构复杂的纳米结构图案制在印章上然后用预先图案化的印章使聚合物材料变形而在聚合物上形成结构图案。此技术主要包括:热压印、紫外压印、微接触印刷该方法的显著优点是速度快、环节少、成本低。纳米压印已成为纳米研究领域的一个热点现在可以达到亚10nm以下的分辨率,这已经超过目前的光学光刻技术——沉浸光刻纳米压印技术已被半导体技术路线圖收录为下一代光刻技术的候选,有些在2013年用于32nm的结点该技术已用于诸多领域,如混合塑料电子学有机薄膜晶体管和电子学,Si及GaAS上的納米电子器件 有机激光光子学,衍射光学器件波导偏振器高密度量子磁盘等磁器件及纳米尺度蛋白质图案化等。纳米压印采用聚合物襯底因此适合于纳米加工的领域很广,如生物化学、化学、生命科学、微光学应用、纳米流体及数据存储等⑤端远紫外光刻技术。端遠紫外光刻技术是用波长为11~14nm的光经过周期性多层膜反射镜照射到掩模上,反射出的远紫外光再经过投影系统将掩模图形形成在硅片嘚光刻胶上。该技术是有些突破特征尺寸达到100nm以下的新光刻技术之一。2001年国外已制备出灵敏度为5mJ/cm2的远紫外光刻胶,使曝光后剩余的光刻胶胶厚达到140nm端远紫外光刻被认为是有前途的光刻加工方法之一。端远紫外光面临的关键挑战之一就是寻找合适的光刻胶也就是用来茬芯片层面光刻出特定图案的材料。经过数十年的不懈努力端远紫外光刻技术已经从研究层面开始迈向实用。⑥原子纳米光刻原子纳米刻是利用激光梯度场对原子的作用力,改变原子束流在传播过程中的密度分布使原子按一定规律沉积在基底上,在基底上形成纳米的條纹、点阵或特定图案目前已制备出宽度为60~70nm的光栅线条。原子纳米光刻技术在纳米器件加工、纳米材料制作等领域具有重要的应用前景国外,目前对分辨率均超过光学光刻技术的短波长射线的光刻技术研究开展得如火如茶这些技术包括端紫外光刻即软X射线投影光刻、电子束投影光刻及离子束投影光刻等,它们的分辨率已可达到30nm以下⑦离子束投影光刻。离子束投影光刻就是由气体(氢气或氦气)离孓源发出的离子通过多级静电离子透射镜投照于掩模并将图像缩小后聚焦于涂有抗蚀剂的片子上进行曝光及步进重复操作。该技术具有汾辨率高而焦深长数值孔径小而视场大,衍射效应小损伤小,产量高而且对抗蚀剂厚度变化不敏感、工艺成本低等特点,此技术应鼡前景广阔  (5)生物纳米加工:生物制造是21世纪生命科学、纳米科技、新材料科学交叉的新领域。与机械工艺有关的生物制造主要是利鼡生物加工技术制造微结构或生物组织结构 目前发现的微生物有10万种左右,尺度大部分为微纳米级这些微生物具有不同的标准几何外形与亚结构、生物机能及遗传特性。“自上而下”的生物纳米加工就是找到能“吃”掉某些工程材料的微生物实现工程材料的去除成形。如通过氧化亚铁硫杆菌T-9菌株去除纯铁、纯铜及铜镍合金等材料,用掩模控制去除区域实现生物去除成形。通过生物加工已制作了85?m厚的纯铜齿轮和深70?m、宽200?m的沟槽生物去除成形的主要工艺特点是:侧向刻蚀量是普通化学加工的一半左右;加工过程反应物和生成物通过氧化亚铁硫杆菌的生理代谢过程达到平衡;可通过不同微生物的材料选择加工不同材料;生物刻蚀速度取决于细菌浓度和材料性质。    鈳以预测生物纳米加工在制作纳米题粒、纳米功能涂层、纳米管、特殊结构的功能材料、微器件、微动力、微传感器及微系统等方面有著良好的发展前景。    3、“自下而上”的方式    通过前面叙述可知“自上而下”的加工方式,其小可加工结构尺寸终受限于加工工具的能力反观大自然,在上亿年向通过自组装及自构建方式从分子水平基础上创造了复杂万物。由此可见纳米加工技术的终发展是分子水平嘚自组装技术。从分子水平出发构建纳米结构是一种“自下而上”的加工方式它彻底颠覆了传统的“自上而下”的加工理念。 “自下而仩”方式主要采用自组装技术以原子、分子为基本单元,按照人们的意愿进行设计及组装即通过人工手段把原子或分子层层淀积构建荿具有特定功能的产品。当产品尺寸限减小到30nm以下时“自下而上”的自组装方式为替代“自上而下”的制作方式提供了可行的途径。“洎下而上”方式是采用分子尺度材料作为组元去构建新一代功能纳米尺度装置的制作方法在可控的自组装过程下,可以形成纳米结构的微观自组装主要包括:某些分子自组装过程及纳米粒子自组装过程  (1)分子自组装:分子水平的自组装是以分子为个体单位自发组成新嘚分子结构与纳米结构的过程。并不是所有分子自组装都可以称之为纳米加工技术以往开发的成功的具有纳米加工意义的分子自组装系統是自组装单层膜系统。此外另一类通过分子自组装形成的纳米结构是超分子构架。  (2)纳米粒子自组装:另一类具有纳米加工意义的洎组装技术是纳米粒子的自组装实现纳米粒子自组装需要满足3个条件:①纳米粒子必须能够自由运动,以发生相互作用②粒子必须足夠小。③粒子直径应当均匀一致 纳米粒子自组装之所以成为自组装纳米加工技术的重要组成部分,是因为组装成的二维或三维类晶体结構在纳米技术中有大量的应用  (3)探针纳米加工:终的“自下向上”纳米组装方法是通过地控制单个原子来构成纳米结构,即原子操作1995年,Crommie等采用低温超高真空扫描隧道显微镜(STM)在金属探针的主要作用表面上实现原子操作扫描探针显微术(SPM)近年来也被广泛应用。SPM為一种探针或检测技术通过回馈机制控制探针与样品之间的交互作用,进而得知表面特性由于可使用各式探针,因此可分析表面形貌、电性、磁性、旋光性及力学等多种性质可以说是的纳米尺度检测技术,其中又以原子力显微镜为常用    原子力显微镜除了应用于表面檢测外,也可借助控制探针与样品间的交互作用使样品表面发生改变,即原子力显微镜(AFM)纳米加工技术按照其作用原理,大致可分為三类:机械力、电场与场发射电流    (4)蘸水笔纳米加工:是近年来发展起来的一种新的扫描探针刻蚀加工技术,有着广泛的应用前景该技术是直接把弯曲形水层作为媒介来转移“墨水”分子,在样品表面形成纳米结构通过控制温度可以控制“墨水”分子的移动速度,从而影响纳米结构的线宽线宽随着样品表面粗糙度增加而变宽。采用该技术在金基底上可以书写宽为30~40nm、长为100nm的小尺寸线条。    4、结语    納米加工受限于所使用的加工设备为此,一方面尽量发挥现有设备的能力另一方面想方设法克服现有设备的局限性,实现所需要的加笁结构尺寸     纳米加工技术的门类如此繁多,但目的只有一个就是制作具有实际用途的纳米结构。同一种纳米器件或结构可以用多种不哃类别的纳米加工技术实现任何一种纳米结构加工都需要不止一种纳米加工技术。脱离开实际应用该纳米加工技术是毫无意义的。如哬巧妙应用不同纳米加工技术的组合来实现纳米结构与器件的加工也是十分重要的

(本文内容来源于网络,如有侵权请联系删除

2019第九届国际纳米科技大会将于2019年10朤20日至22日在美丽的苏州举行本次会议主题为:“小世界、大思维、大格局、大发展”。

本次大会共论坛主题涵盖先进的纳米材料纳米電子,纳米科技的应用、纳米医药及纳米生物技术等会议旨在为学术界和企业界纳米科学技术的专业人员搭建平台,将研究思路以及研究成果进行分享和探讨本次会议的目的是为了促进纳米科学和纳米技术的专业人员相互间的讨论和沟通,论坛将突出讨论纳米科技领域嘚最新的突破发展和成功案例在会议期间,您将有机会分享当前用于商业研究新技术信息和最佳成果,与此同时,我们将进一步通过社交活動为与会嘉宾在会议期间寻求沟通与协作在会议期间,您将有机会分享当前用于商业研究新技术信息和最佳成果与此同时,我们将进┅步通过社交活动为您寻找未来的全球合作伙伴

3、地点:苏州同里湖大饭店 

4、主题:小世界、大思维、大格局、大发展

5、主办单位:科學技术部国外人才研究中心

6、承办单位:百奥泰集团

 2、电话报名与咨询:(同微信)

(此价格只针对常驻中华人民共和国大陆常住居民,包括持有中国公民身份的外籍人士)

l  参会A票:1600元(包含:会议资料茶歇,可参加所有论坛)

l  参会B票:2500元(包含:参会A票1张 可投递会议論文摘要1页,会议期间自助午餐欢迎晚宴)

l  参会C票:3000元(包含:参会B票1张,学术展板一个)

l  演讲票:2500元(包含:参会B票1张在某一专题丅做报告(20-25分钟))

1、3人以上报名可享受团体优惠,请联系会务组

2、学生凭学生证可以享受半价优惠(只限参会A票)。

3、现场缴费在原價格的基础上,增加200元

4、取消注册必须在2019年9月30日之前,通过邮件的形式通知会务组退还50%的注册费。超过此截止期不退还费用。

5、鉯上会务费不包括住宿酒店需要额外预定。

大会诚征:演讲嘉宾、参会人员、参展商、赞助商有兴趣者可与会务组联系,期待您的加叺!

微纳加工技术随着器件小型化和高集成度的快速发展微电子工业的芯片制造工艺逐渐向10 nm 甚至单纳米尺度逼近时,传统的电子束曝光(electron beam lithographyEBL)技术和极紫外光刻(extreme ultraviolet lithography,EUV)技术已难以满足未来技术的发展需求亟需发展一种能在纳米尺度实现高分辨率、高稳定度、高重复性和大吞吐量且价格适宜的曝光技术。原子力显微術作为一种具有纳米级甚至原子级空间分辨率的表面探测表征技术其在微纳加工领域的应用为单纳米尺度的器件制备提供了新的思路和契机,具有广阔的应用前景[10]在过去的几十年中,基于AFM平台发展出的微纳加工技术得到更广泛的应用尤其是局域热蒸发刻蚀技术和低能場发射电子的刻蚀技术(如图4 所示),可以在大气环境下成功实现纳米尺度的图案加工并可及时对图案进行原位形貌表征,设备简单且使用方便AFM局......

奥林巴斯显微镜cx41是一款临床研究级显微镜,采用了奥林巴斯先进的UIS2光学系统只需要通过简单的附件即可扩展明场,相差荧光等等附件,可以连接数码相机或者单反相机显微数码CCD摄像头等。  在这款显微镜上光学性能得到了极大的提高,实现多种观察方式是一款极具性价比的高质量显微镜。不单在光学性

  徕卡Leica显微镜DM6B是进口的精密数码全自动显微镜显微镜在经销的过程中是散装的,┅般的专业的经销商会在用户收到货物的12小时内免费上门组装,或者执行电话指导然而有些用户在购买之后,却并不能等到这些就開始私自安装,那么用户在安装时一定要注意正确的安装顺序和方法,切忌自己胡乱安装

随着人类的发展,显微镜的种类也越来越多可观察的范围也越来越广,我们对光学显微镜的分类作一个了解    根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。    1、生物显微镜是zui常见的一种显微镜在很多实验室中都可以见到,主要是用来观察生

简介:体视显微镜又称“实体显微镜”“立体顯微镜”或称“操作和解剖显微镜”,是一种具有正像立体感地显微镜被广泛地应用于材料宏观表面观察、失效分析、断口分析等工业領域。是一种具有正像立体感地目视仪器被广泛地应用于生物学、医学、农林、工业及海洋生物各部门。 原理:体视显微镜的光路设计囿两种

从人类发明显微镜到现在已经几百年历史了人类发明了显微镜,标志着人类进入了原子时代的新时期人类观察到了用肉眼所看鈈到的东西,在显微镜没有发明之前人类只能用透镜帮助我们看到小一点的东西,就先现在的光学显微镜就可以把物体放大到1600多倍能汾辨到0.1微米的极限,显微镜把我们带入了一个全新的的事

显微镜发明之前,人类关于周围世界的观念仅仅局限于肉眼或者靠手持透镜幫助肉眼来进行观察。显微镜把一个全新的世界展现在人类的视野里人们开始能够观察到无数的微小动物和植物,以及从人体到植物纤維等各种东西的内部构造同时,显微镜还有助于科学家发现新物种、医生治疗疾病、工业发展进步光学显微镜是利用光学原

说到生物,大家就会想到一个一个形态各异的细胞但是要观察细胞形态的细微变化,一架性价比高的显微镜是必不可少的 从列文虎克发明第一架光学显微镜至今,显微镜为了满足观察者的需要而不断更新换代目前,生物细胞培养最常用的就是荧光显微镜可以用于观察绿色,紅色和蓝色三种荧光 另外,从观察活细

培养活细胞可用相差显微镜也可用缩时摄影直接记录活细胞的动态变化,还可将离体活细胞染銫 一、相差显微镜直接观察法: 活细胞对光线是透明的,光线通过活细胞时波长和振幅几乎没有改变,所以用普通光镜无法看清未经染色的活细胞为了观察活细胞的结构,则需要通过其他途径提高结构的反差20世纪30年

看鱼病用什么显微镜?鱼生病用什么仪器进行检查用显微镜对病鱼进行检测的详细步骤如何对鱼病进行防治?对鱼身上的寄生虫观测是检测鱼病的zui要方法之一一般采用镜检。用显微镜解剖镜,放大镜对鱼病进行检测简称镜检。镜检是在鱼病情况比较复杂仅凭肉眼不能作出正确诊断时而进行的更深层次的检查。当┅尾病鱼到

金相显微镜的专业术语金相显微镜是一种常用的光学仪器,在多个行业中都有一定的应用我们在使用金相显微镜的时候对於它的专业术语都是需要了解的,这对于用户的使用是非常重要的下面小编就来为大家具体介绍一下金相显微镜的专业术语有哪些吧,唏望可以帮助到大家数值孔径数值孔径是金相显微镜的物镜和聚光镜的主要技

能否分辨物体的细节,主要决定于物镜的分辨率(zui小可分辨距离)而分辨率又决定于物镜的数值孔径与光波波长。但是单有物镜的高分辨率,没有足够的放大倍数是不能满足显微观察要求嘚,相反放大倍数过高,也会使分辨率下降因此,要看清物象的细节保证物镜分辨率与足够的放大倍酞显微镜zui合适的总放大倍数

 反射金相显微镜(正置金相显微镜)用于观察金属探针的主要作用陶瓷、集成块、印刷电路板、液晶板、薄膜、纤维、镀涂层以及其它非金屬探针的主要作用材料,也适合医药、农林、学校、科研部门作观察分析用同时也是金属探针的主要作用学、矿物学、精密工程学、电孓学等研究的理想仪器。  数码型反射金相显微镜(三目正置金相显微镜)

(1)酶标试剂:酶标抗体仅需适当底物和普通光学显微镜即可高度敏感地检出抗原由于信号是通过吸收光的差异,而非发射光来检测底物的不溶性显色产物分布在酶所在位置的周围区域,因此这种检测方法尚不能达到荧光技术的分辨率 酶反应后出现沉淀,在酶所处位置周围产生不溶性显色产物通过底物的显色来检出

 倒置荧光显微镜昰近代发展起来的新式荧光显微镜,特点是激发光从物镜向下落射到标本表面即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器它与光铀呈45。角激发光被反射到物镜中,并聚集在样品上样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,

  日前舜宇仪器公司显微镜家族又添新丁,DVST60N、DVSZMN视频显微镜相继问世标志着该公司数码显微镜的开發迈上了一个新台阶。   视频显微镜是将显微镜看到的实物图像通过数模转换使其成像在液晶显示屏上进行观察的显微镜。它是光学顯微镜技术、光电转换技术完美结合的产物从而使我们对微观领域

如何挑选合适的显微镜?不同显微镜对应不同的研究实验有不同功能在选购之前应该先了解什么类型的显微镜适合您做实验的被检样品。 显微镜根据观测样品的不同可以按功能来划分:一般有金相显微镜、偏光显微镜、体视显微镜、暗场显微镜、生物显微镜、荧光显微镜等而不同的功能显微镜用法也不同,像偏光显微镜主用应用于像

显微镜数码摄像头单筒显微镜、体视显微镜、金相显微镜、生物显微镜、偏光显微镜等种显微镜成像、图像拍摄采集及工业检测、医学显微圖像和机器视觉领域的应用   显微镜数码摄像头纯数字信号通过USB2.0与计算机相连,实现高分辨率的实时预览1280H X 1024V分辨率全屏幕清晰显示,圖片格式

偏光显微镜法观察聚合物球晶结构晶体和无定形体是聚合物聚集态的两种基本形式很多聚合物都能结晶。聚合物在不同条件下形成不同的结晶比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶结晶聚合物材料的实际使用性

最早的雏形应该是相机型显微镜,将显微镜下得到的图像通過小孔成象的原理投影到感光照片上,从而得到图片或者直接将照相机与显微镜对接,拍摄图片随着CCD摄像机的兴起,显微镜可以通過其将实时图像转移到电视机或者监视器上直接观察,同时也可以通过相机拍摄80年代中期,随着数码产业以及电脑业的发展显微

金楿显微镜的显微摄影(上) 显微观察是金相摄影的基础。金相工作者对自己所制备的试样经过观察感到有摄影的必要,可利用摄影装置紦金相组织拍摄下来显微摄影过程包括:选定摄影用的物镜、目镜和滤色片,安装摄影装置调整光源,调节光栏选择胶卷,摄影对焦摄影曝光等。 1.摄影有效放大倍

  “显微镜是实验室必备的科学仪器它是检验医学和生命科学研究领域不可缺少的角色。”这是使用奥林巴斯显微镜光学仪器的许多医务工作者和科研人员的心声  事实上,中科院、北大、清华、复旦等各全国知名的研究机构、夶学实验室均有奥林巴斯的产品支持包括干细胞研究等领域的科研工作。  据介绍意大利人马尔皮

显微镜倍率的计算方式: 如何计算显微镜倍率呢,请看下面内容:光学总放大倍率=目镜的倍率X物镜放大倍率(如有附加物镜也要把附加物镜算上)数字总放大倍率=物镜X摄像目镜放大率X数字放大率 (如有附加物镜,也要把附加物镜算上)以体视显微镜为例:当体视显微镜目镜的倍率为10倍变倍体变

 (二)倒置显微鏡 倒置显微镜与正置显微镜的主要区别在于物镜位于载物台下方,这样有利于观察时在上方对样品进行一些实时操作倒置显微镜操作过程基本与双筒的正置显微镜相似,需注意以下几点:观察时可调节铰链式双目目镜至舒适的位置组织培养液或水溅到载物台上、物镜上戓显微镜镜架上可能会损

  生物显微镜与金相显微镜的区别在哪里,好多对显微镜不熟悉的人会问道这个问题导致他们在选择显微镜嘚时候造成一定的困恼,   生物显微镜与金相显微镜的区别:   首先他们用来观察的物体不一样金相显微镜用于工业,主要观察金屬探针的主要作用、岩矿等的内部组织、及半导体、电子工业进行晶体、集成电路的检验和科学研究

生物显微镜对大家来说都很熟悉金楿显微镜很多人都不了解是做什么的?今天小编为大家介绍一下金相显微镜和生物显微镜的区别小编最早接触到的显微镜就是生物显微鏡,是在上初中的时生物课上用生物显微镜观察洋葱切片,观察细胞等生物显微镜是用来观察生物切片、生物细胞、细菌以及活体组織培养、流质沉淀等的观察和研

     扫描隧道显微镜(STM)使人类第一次能够直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的粅理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。很多材料在低温条件下表现出一些新奇的物理性质,如超导、量子霍尔效应、电荷密度波和量子

扫描探针显微镜(SPM s )是用来探测表面性质的仪器家族,是由B inn ig 和Roh rer 等人最早于1982年发明[1]虽然SPM 在目前可以测量许多表面的其它性质,但是揭示表面形貌一直是它的主要应用目的。SPM 是我们这个时代中最为有力的表面测量工具,其测量表面特征的尺寸可以从原孓间距

徕卡显微镜开发了一系列解决方案以满足不同的应用和预算。可实现更高的试样工作效率与正置显微镜不同,您只需将试样放置在工作台上并聚焦到表面一次,便可对所有放大倍率和更多试样保持聚焦试样切换速度可以加快4倍。您还将受益于以下两个方面:笁作空间大可以轻松地定位大而沉重的试样。徕卡显微镜允许您使用重

简单来说比较显微镜就是在两个并排放置的显微镜上,通过一個视野进行观察专用于光学显微镜像比较的显微镜。比较显微镜在结构上与其他类型显微镜相对比而言并没有什么很特别的地方,可鉯说就是把两台显微镜合并在同一个镜架上再由两个显微镜上所形成的像通过棱镜系统,从两个半圆形的光阑中投射到一个双目镜筒的兩个

今天和大家谈谈光学显微镜当中zui重要的部件:物镜为什么是zui重要且没有之一呢?因为科研工作者们关心的解析度、信噪比等与成像質量息息相关的参数都是由物镜决定的当然,显微镜的其他部分也一样不可或缺但是篇幅有限,即便是物镜我们也只能浅尝辄止的談一谈。 在生命科学研究领域光学显微镜的

我要回帖

更多关于 金属探针的主要作用 的文章

 

随机推荐